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Abstract

Perturbing the germ at the origin of a planar rotation re2πiθ 7→ re2πi(θ+ω)

leads to two celebrated results which describe geometrically the dynam-
ical behaviour of the iterates of the perturbed diffeomorphism F , that
is the structure of the orbits O(z) = {z, F (z), F 2(z), . . . , Fn(z), . . .}: the
Andronov–Hopf–Neimark–Sacker bifurcation of invariant curves under a
generic radial hypothesis of weak attraction (or repulsion) and the Moser
invariant curve theorem under an angular twist hypothesis in the area
preserving case. The invariant curves whose existence is proved are nor-
mally hyperbolic with generic induced dynamics in the first case, with a
dynamics smoothly conjugate to a diophantine rotation in the second one.

Statements and proofs in this first section illustrate the notion of normal
form, introduced by Poincaré in his thesis in 1879. Closely related to the
“averaging of perturbations” used by astronomers since the eighteenth
century, it generalizes the Jordan normal form of a matrix to the non-
linear world. Namely, by introducing local coordinates which reveal an
approximate geometry underlying the situation, it sets the scene for the
application of refined analytic tools to the determination of which features
of this geometry do really exist.

The two sections which follow are devoted to the dynamical study of the
objects which appeared in the first: homeomorphisms of the circle and
monotone distortions of the annulus. In the last section, a hint is given of
the intermediate dynamics of non invertible endomorphisms of the circle.
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1 Elliptic fixed points

Let F : (S, p) → (S, p) be a local C∞ (or analytic) diffeomorphism of a surface S
defined in the neighborhood of a fixed point p = F (p). The fixed point is said to
be elliptic if the spectrum of the derivative dF (p) is of the form {2πiω,−2πiω}
with ω ̸= ±1. This is equivalent to the existence of a linear conjugacy of dF (p)
with the rotation of angle 2πω. Hence, after choosing good coordinates, one can
suppose that p = 0 and that F : (C, 0) → (C, 0) is such that

F (ζ) = λζ +O(|ζ|2), with λ = e2πiω.

In other words, F is a perturbation of a rotation.1 Now, a rotation preserves
each circle centered at the origin. This is a very strong property, very likely
to be destroyed by the non-linear terms in the Taylor expansion of F . Nev-
ertheless, reality is subtler and the study of the fate of these invariant circles
is the starting point of two famous theories which correspond roughly to the
dichotomy between dissipative and conservative dynamics:
1) Andronov–Hopf–Neimark–Sacker bifurcation theory which analyzes what hap-
pens when one considers a generic2 diffeomorphism F with an elliptic fixed point
at 0. The local behaviour of F itself is quite dull: indeed, the radial behaviour
of the nonlinear terms turns the fixed point into an attractor or a repulsor and
no other invariant object persists in its neighborhood. It is only when consider-
ing “generic” 1-parameter families Fµ of local diffeomorphisms stemming from
F0 = F that the whole richness of the dynamics is regained (see [A1, A2]):
each small enough circle invariant under the rotation dF (0) becomes a normally
hyperbolic3 closed curve invariant under some Fµ (figure 3).
2) Kolmogorov–Arnold–Moser (KAM) theory which analyzes the case when F
is area preserving, a hypothesis which is natural for diffeomorphisms with a
mechanical origin, the paradigmatic example being first return maps4 in the
restricted three body problem first studied by Poincaré (see [C2], section 6). In
this case, it is the angular behaviour of the non-linear terms which plays the key
part, the result being that “many” of the circles invariant under the rotation
dF (0) persist in the form of closed curves invariant under the action of F itself.
Moreover the restriction of F to such an invariant closed curve is smoothly
conjugated to a rotation whose angle is of the form 2πα with α not rational and
even “far from the rationals” in a precise sense.

1Beware that the notation F (ζ) does not mean that F is complex analytic, its expression
depends on ζ and ζ

2We shall not give a formal definition of this word; it means essentially that what is de-
scribed is the general situation and that only special hypotheses could prevent the description
to be correct.

3Roughly speaking this mean that any attraction or repulsion normal to the curve under
the iterates of Fµ dominates any attraction or repulsion inside the curve; this condition insures
the robustness of the curve

4see section 1.4 of [C1] for a brief introduction
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1.1 Preparation: Poincaré’s theory of normal forms

The idea, which goes back to Poincaré’s thesis in 1879, is the following: being a
rotation, the derivative of F commutes with the whole group SO(2) of rotations.
This is shown to imply that, provided some conditions on ω are satisfied, a high
order approximation of F is locally invariant by an action of SO(2) close to
the standard one. Equivalently, one proves the existence of local coordinates
which reveal the approximate geometry of the map, in a spirit similar to the
Jordan form of a matrix. The reader will notice that the existence of only a
finite number of derivatives of F is required for what follows; this is important
in view of a first reduction to a center manifold which, in general, has only finite
differentiability.

Theorem 1 If λ = e2πiω is such that λq ̸= 1 for all integers q ∈ N such that
q ≤ 2n+ 2, there exists a local diffeomorphism

H : (C, 0) → (C, 0), ζ 7→ z = H(ζ) = ζ +O(|ζ|2)

such that

H◦F◦H−1(z) = N(z)+O(|z|2n+2), where N(z) = z
(
1 + f(|z|2)

)
e2πi(ω+g(|z|

2)),

with f and g real polynomials of degree n such that f(0) = g(0) = 0. If moreover
λ2n+3 ̸= 1, one can achieve a rest which is O(|z|2n+3).

The so-called normal form N , is characterized by the fact that it commutes
with the whole group SO(2) of rotations:

∀α,N(e2πiαz) = e2πiαN(z).

Proof. Let us start with a local diffeomorphism of degree 2,

H2 : (C, 0) → (C, 0), z = H2(ζ) = ζ +
∑

i+j=2

γijζ
iζ
j
.

The direct computation of H2 ◦ F ◦H−1
2 is illustrated on the diagram below:

ζ λζ +
∑
i+j=2 αijζ

iζ̄j +O(|ζ|3)

ζ +
∑
i+j=2 γijζ

iζ̄j λζ +
∑
i+j=2 αijζ

iζ̄j +
∑
i+j=2 γijλ

iλ̄jζiζ̄j +O(|ζ|3)

H2

F

H2

H◦F◦H−1

= z = λz+
∑

i+j=2

(
αij + γij(λ

iλ̄j − λ)
)
ziz̄j+O(|z|3)

Figure 1. Changing coordinates.

Supposing that F (ζ) = λζ +
∑
i+j=2 αijζ

iζ
j

+O(|ζ|3), we get

H2 ◦ F ◦H−12 (z) = λz +
∑

i+j=2

(
αij + (λiλ

j − λ)γij

)
zizj +O(|z|3).

Hence, if no resonance relation of the form λiλ
j−λ = 0 is satisfied with indices

i, j such that i + j = 2, that is if λ3 6= 1 (otherwise λ
2 − λ = 0), the choice of

γij = −(λiλ
j − λ)−1αij kills all degree 2 terms in the Taylor expansion of the

transformed map H2 ◦ F ◦H−12 .
If one tries in the same way to simplify the terms of degree 3 in the Taylor
expansion of H2 ◦ F ◦H−12 , one stumbles upon an unavoidable resonance

λ2λ− λ = 0

which merely reflects that |λ| = 1. Hence , if no other resonance of order 3

exists, which amounts to saying that λ4 6= 1 (otherwise λ
3 − λ = 0), a local

diffeomorphism H3 of the form H3(z) = z +
∑
i+j=3 γijz

izj can be found such

that5

H3 ◦H2 ◦ F ◦H−12 ◦H−13 (z) = λz + c1z|z|2 +O(|z|4).

Now, if λq 6= 1 for all q ≤ 2n+ 3, one finds by induction a local diffeomorphism
H = H2n+2 ◦H2n+1 ◦H3 ◦H2 tangent to Id at 0 such that

H ◦ F ◦H−1(z) = λz +

n∑

k=1

ckz|z|2k +O(|z|2n+3).

If λ2n+3 = 1, there is possibly a monomial γz2n+2 which cannot be canceled.
Finally, chosing polar coordinates, one writes H ◦ F ◦H−1 as in the conclusion

5in order to avoid too cumbersome notations we still call z the transformed coordinate
H3(z).
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Supposing that F (ζ) = λζ +
∑
i+j=2 αijζ

iζ
j
+O(|ζ|3), we get

H2 ◦ F ◦H−1
2 (z) = λz +

∑

i+j=2

(
αij + (λiλ

j − λ)γij

)
zizj +O(|z|3).

Hence, if no resonance relation of the form λiλ
j−λ = 0 is satisfied with indices

i, j such that i + j = 2, that is if λ3 ̸= 1 (otherwise λ
2 − λ = 0), the choice of

γij = −(λiλ
j − λ)−1αij kills all degree 2 terms in the Taylor expansion of the

transformed map H2 ◦ F ◦H−1
2 .

If one tries in the same way to simplify the terms of degree 3 in the Taylor
expansion of H2 ◦ F ◦H−1

2 , one stumbles upon an unavoidable resonance

λ2λ− λ = 0

which merely reflects that |λ| = 1. Hence , if no other resonance of order 3

exists, which amounts to saying that λ4 ̸= 1 (otherwise λ
3 − λ = 0), a local

diffeomorphism H3 of the form H3(z) = z +
∑
i+j=3 γijz

izj can be found such

that5

H3 ◦H2 ◦ F ◦H−1
2 ◦H−1

3 (z) = λz + c1z|z|2 +O(|z|4).
Now, if λq ̸= 1 for all q ≤ 2n+3, one finds by induction a local diffeomorphism
H = H2n+2 ◦H2n+1 ◦H3 ◦H2 tangent to Id at 0 such that

H ◦ F ◦H−1(z) = λz +

n∑

k=1

ckz|z|2k +O(|z|2n+3).

If λ2n+3 = 1, there is possibly a monomial γz2n+2 which cannot be canceled.
Finally, chosing polar coordinates, one writes H ◦ F ◦H−1 as in the conclusion
of the theorem.

Remark. Resonances of the form λq = 1 for 1 ≤ q ≤ 4 are called strong
resonances. They are characterized by the fact that the resonant monomial
zq−1 is of smaller or comparable order to the first unvoidable resonant monomial
z|z|2 and hence could play a role in the geometry of the normal form N which
could become invariant only by rotations by an angle multiple of 2π/q. In the
sequel, the hypotheses always exclude strong resonances.

Exercise 1 Write down the general form of a normal form N in case λq = 1
and q ∈ N is the smallest integer with this property. Show that, in general, N
will only commute with the finite group generated by the rotation 2π

q :

N(e
2π
q iz) = e

2π
q iN(z).

Remark on notations. : Theorem 1 allows us to suppose from the start that
local coordinates z have been chosen so that F is in the form given, by Theorem
1. In other words, from now on we shall write F (z) instead of H ◦ F ◦H−1(z).

5in order to avoid too cumbersome notations we still call z the transformed coordinate
H3(z).
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1.2 The dissipative case

1.2.1 Andronov–Hopf–Neimark–Sacker bifurcation

The first two names are attached to the “continuous” case of a differential equa-
tion, the last two to the present “discrete” case of a map (see [A1, A2, I, C3]).

In general, the polynomial f(s) =
∑n
k=1 aks

k is such that a1 ̸= 0. If a1 < 0,
one can scale the coordinates so that a1 = −1 which, provided λq ̸= 1 for all
integers 1 ≤ q ≤ 4, puts F into the form

F (z) = N(z) +O(|z|4), where N(z) = z
(
1− |z|2

)
e2πi(ω+b1|z|

2)).

As well as the rotation dF (0), the normal form N still leaves invariant the
foliation by circles centered at 0 but it sends the circle of radius r onto the
circle of radius r(1 − r2). This implies not only that limm→∞Nm(z) = 0 but
also that limm→∞ Fm(z) = 0 as soon as |z| is small enough. Indeed, if |z| is
small enough, |F (z)| < |z|

∣∣1− 1
2 |z|2

∣∣ .
One says that 0 is a weak attractor (figure 2), the adjective “weak” recalling
that the attraction is due to a non-linear term.

Figure 2. Weak attraction.

Hence we completely understand the dynamics of F in some neighborhood V
of the fixed point 0. Things become much more interesting if one perturbs F
by including it in a smooth one parameter family of local diffeomorphisms Fµ
such that F0 = F . As dF0)(0) − Id is invertible, a direct application of the
implicit function theorem shows that, in the neighborhood of 0, the equation
Fµ(z)− z = 0 has a unique solution zµ depending smoothly on µ and such that
z0 = 0. Hence, after a translation by zµ of the coordinates, one can suppose
that for all µ near 0, one has Fµ(0) = 0.
For values of µ such that the spectrum of dFµ(0) is not on the unit circle, there
is no resonance and one could get a normal form which is linear up to any orde r.
Actually, as Poincaré was the first to notice in the case of differential equations,
we have the following

Proposition 2 If F (z) = λz + O(|z|2) is analytic near 0 and |λ| ̸= 1, F is
analytically conjugate near 0 to its derivative dF (0)z = λz.

Exercise 2 Prove this proposition.
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Hint: 1) Writing F (z) = λz+f(z) and H(z) = z+h(z), the conjugacy equation
H ◦ F ◦H−1(z) = λz amounts to λh(z)− h ◦ F (z) = f(z). Noting Rλ the map
z 7→ λz and introducing the map

A(h, f) = Rλ ◦ h− h ◦ F − f,

notice that, at least formally,

A(0, 0) = 0 and
∂A

∂h
(0, 0) · h = Rλ ◦ h− h ◦Rλ.

2) If g(z) =
∑
j+k≥2 gjkz

j z̄k, find the (unique) solution h(z) =
∑
j+k≥2 hjkz

j z̄k

of the “homological equation” Rλ ◦ h − h ◦ Rλ = g and show that the radius of
convergence of h is at least the one of g.
3) Introduce appropriate Banach spaces of complex analytic maps on which A is
defined and conclude the proof by applying the standard implicit function theorem
in Banach spaces.

However, this proposition is not of much use here: on the one hand the domain of
definition of the conjugating diffeomorphism Hµ tends to 0 when the spectrum
of dFµ(0) tends to the unit circle and interesting phenomena occur outside of
this domain, on the other hand, this would break the continuity with respect to
µ of the coordinate change Hµ. In consequence, one chooses to eliminate in Fµ
only the same terms as the ones we have eliminated in F0, that is we mimic for
Hµ the construction of H in section 1.1. Doing so one gets a smooth family Hµ

of local diffeomorphisms of (C, 0) defined in a fixed neighborhood of 0 which put

Fµ into the form Fµ(z) = z(1+fµ(|z|2))e2πi(ω+gµ(|z|
2))+ · · · given by Theorem 1

except that fµ(s) =
∑n
i=0 aks

k and gµ(s) =
∑n
k=0 bµ(s)s

k now start with terms
of degree 0. Finally, we shall suppose that a0(µ) is monotone (say increasing)
for µ close enough to zero. This is also a “generic” condition which amounts
to saying that the spectrum of the derivative dFµ(0) crosses transversally the
unit circle when µ crosses the value 0. It allows us to change parameters and
suppose that a0(µ) = µ. At the end, we are reduced to study a family Fµ of
local diffeomorphisms of the form




Fµ(z) = Nµ(z) +O(|z|4), where
Nµ(z) = z

(
1 + µ+ a1(µ)|z|2

)
e2πi(b0(µ)+b1(µ)|z|

2)), and

a1(µ) = −1 +O(|µ|), b0(µ) = ω +O(|µ|).
The rest can be made O(|z|5) except if λ5 = 1, which can leave a term γz4.

Due to the commutation of Nµ with the group SO(2) of rotations, the study
of its dynamics reduces to an elementary question in dimension 1, namely the
dynamics of the map from R+ to itself r 7→ r(1 + µ+ a1(µ)r

2). The results are
summarized in figure 3: the origin, which is a strong (=linear) attractor when
µ < 0, becomes a strong repellor when µ > 0. But points far enough from the
origin are still attracted and in between appears an invariant circle Cµ of radius
the unique solution rµ of the equation µ+ a1(µ)r

2
µ = 0.
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This circle is a global attractor : under iteration of Nµ, it attracts any point of
R2 except the fixed point {0}. Moreover, it is normally hyperbolic, which means
that every attraction or repulsion normally to it is stronger than any attraction
or repulsion tangential to it, that is any attraction or repulsion of the rotation
θ 7→ θ + b0(µ) + b1(µ)r

2
µ.

Figure 3. Dynamics of the family of normal forms Nµ.

The content of the following theorem is that the perturbation from Nµ to Fµ
is small enough so as not being able to destroy such a normally hyperbolic
invariant curve (for a general theorem of persistance of normally hyperbolic
invariant sets under a small enough perturbation, see [HPS]).

Theorem 3 (Neimark 1959, Sacker 1964) Under the above hypotheses (in
fact Fµ C

5 is enough), for each µ > 0 small enough, Fµ possesses a Lipschitz
invariant closed curve Γµ, close to Cµ, which attracts a uniform (that is inde-
pendent of µ) neighborhood V of 0 (with 0 deleted). If the local diffeomorphisms
Fµ are of class C∞, these curves are of class Ck with k going to infinity when
µ tends to 0.

Proof. We shall treat only the case when λ5 ̸= 1. If λ5 = 1 and the term γz4 is
present, a circle is not a good enough approximation of the invariant curve and
a further change of variables is necessary to get to a tractable form, see exercise
5 or [I].

Setting z = re2πiθ and Z = Fµ(z) = Re2πiΘ, we have

R = (1 + µ)r + a1(µ)r
3 +O(r5), Θ = θ + b0(µ) + b1(µ)r

2 +O(r4).

Now, the proof proceeds in two steps:

1) One encloses the invariant circle Cµ in an annulus Aµ of width O(|µ|), say
the one bounded by the circles whose radii r±µ are the two solutions of the
equation µ + a1(µ)r

2 ± r3 = 0. One checks that every point z ̸= 0 in some
uniform (i.e. independent of µ) neighborhood V of 0 is eventually sent inside
Aµ under the iterates of Fµ.

8



Figure 4. The attracting annulus Aµ.
Indeed, such a uniform neighborhood may be defined by the two conditions:





if µ+ a1(µ)r
2 + r3 < 0, R− r = µr + a1(µ)r

3 +O(r5) < −1

2
r4,

if µ+ a1(µ)r
2 − r3 > 0, R− r = µr + a1(µ)r

3 +O(r5) >
1

2
r4.

2) One shows that under the iterates of Fµ, every point inside the annulus tends
asymptotically to some invariant curve Γµ close to the circle Cµ. For this, we
choose coordinates in an annulus containing Aµ, centered on Cµ and of the form:

z = rµ(1 +
√
µσ) e2πiθ,

where (θ, σ) ∈ T × I, T = R/Z, I = [−1, 1] (in these coordinates, Aµ corre-
sponds to T× [−1/2+O(

√
µ),+1/2+O(

√
µ)]). The map Fµ becomes (we keep

the same notation Fµ for convenience)

Fµ(σ, θ) =
(
(1− 2µ)σ + µ3/2H(σ, θ, µ), θ + ω(µ) + µ3/2K(σ, θ, µ)

)
,

where ω(µ) = b0(µ) + b1(µ)r
2
µ = b0(µ) − b1(µ)µ/a1(µ) and H(σ, θ, µ) and

K(σ, θ, µ) are C1 with respect to all variables as soon as the original family Fµ is
at least C5 in z and C1 in µ. The formula makes clear that, for µ small enough,
the normal contraction (in O(µ)) dominates the perturbation (in O(µ3/2)).

Let {(θ, ψ(θ)) ⊂ T× I be the graph of a function θ 7→ σ = ψ(θ) from the circle
T to I. We shall see that, as soon as µ is small enough, the image by Fµ of the
graph Γψ of ψ, is contained in T×I and is the graph of a function Fµψ : T → I:

Fµ(Γψ) = ΓFµψ.

The map ψ 7→ Fµψ is called the graph transform. Thanks to the contracting
factor 1 − 2µ which dominates any contraction along the angular direction (a
manifestation of the fact that the normal hyperbolicity of Cµ dominates the
perturbation), one shall show that Fµ is a contraction in a well chosen Banach
space of Ck functions provided µ is close enough to 0 (a condition more and
more stringent when k tends to +∞). The attracting invariant curve Γµ ⊂ Aµ
we are looking for is the graph of the unique fixed point of this contraction.
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Figure 5. Graph transform.

More precisely, let us take as our space

A0
1,1 =

{
ψ : T → I, |ψ(θ1)− ψ(θ2)| ≤ |θ1 − θ2|

}

endowed with the C0 norm ||ψ||0 = supθ∈R/Z |ψ(θ)|.

Exercise 3 It is complete.

Lemma 4 Let ψ ∈ A0
1,1. If 2µ3/2l < 1, the map g : T → T, defined by

g(θ) = θ + ω(µ) + µ3/2K(ψ(θ), θ, µ),

where l a Lipschitz constant of K, is a Lipeomorphism of the circle T.

Proof. Writing h(θ) = µ3/2K(ψ(θ), θ, µ), we have for any θ1, θ2 ∈ T,

|h(θ1)− h(θ2)| ≤ µ3/2l(|ψ(θ1)− ψ(θ2)|+ |θ1 − θ2|) ≤ 2µ3/2l|θ1 − θ2|.

Hence g is Lipschitz. If 2µ3/2l < 1, its inverse g−1 is also Lipschitz; indeed,
setting θ̂ = g(θ), one checks immediately that |θ1−θ2| ≤ (1−2µ3/2l)−1|θ̂1− θ̂2|.

In order to end the proof of theorem 3 (except for the part which concerns the
regularity of the invariant curve), it remains to show that the map Fµ, defined
by

Fµψ(θ) = (1− 2µ)ψ(g−1(θ)) + µ3/2H
(
ψ(g−1(θ)), g−1(θ), µ

)
,

possesses the following properties:
– 1) it sends the space A0

1,1 to itself;
– 2) it is a contraction for the C0-norm on A0

1,1;
– 3) the graph of the unique fixed point of this contraction is an invariant closed
curve which attracts every point of the annulus Aµ under F .

Proof of 1). On the one hand,

||Fµψ||0 ≤ (1− 2µ)||ψ||0 + µ3/2||H||0 ≤ 1− 2µ+O(µ3/2)

is less than 1 as soon as µ is small enough, on the other hand, denoting now by
l a Lipschitz constant common to H and K, more precisely

l = sup

(
|H|, |K|, ∂H

∂σ
,
∂H

∂θ
,
∂K

∂σ
,
∂K

∂θ

)
,
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|Fµψ(θ1)−Fµψ(θ2)| ≤
1− 2µ+ 2µ3/2l

1− 2µ3/2l
|θ1 − θ2| < |θ1 − θ2|.

Proof of 2) With obvious notations,

|Fµψ1(θ)−Fµψ2(θ)| ≤ (1− 2µ)|ψ1(g
−1
1 (θ))− ψ2(g

−1
2 (θ))|

+ µ3/2|H
(
ψ1(g

−1
1 (θ)), g−1

1 (θ), µ
)
−H

(
ψ2(g

−1
2 (θ)), g−1

2 (θ), µ
)
|

≤ (1− 2µ)
(
|g−1

1 (θ)− g−1
2 (θ)|+ ||ψ1 − ψ2||0

)

+ µ3/2l
(
2|g−1

1 (θ)− g−1
2 (θ)|+ ||ψ1 − ψ2||0

)

≤ (1− 2µ+ µ3/2l)||ψ1 − ψ2||0 + (1− 2µ+ 2µ3/2l)|g−1
1 (θ)− g−1

2 (θ)|

≤
(
1− 2µ+ µ3/2l +

(1− 2µ+ 2µ3/2l)µ3/2l

1− 2µ3/2l

)
||ψ1 − ψ2||0.

In the penultimate inequality, the second term comes from the identity

θ = g−1(θ) + ωµ + µ3/2K(ψ(g−1(θ)), g−1(θ), µ),

which implies

|g−1
1 (θ)− g−1

2 (θ)| ≤ µ3/2l
(
|ψ1(g

−1
1 (θ))− ψ2(g

−1
2 (θ))|+ |g−1

1 (θ)− g−1
2 (θ)|

)

≤ 2µ3/2l|g−1
1 (θ)− g−1

2 (θ)|+ µ3/2l||ψ1 − ψ2||0.

Proof of 3) Let ψµ ∈ A0
1,1 be the unique fixed point of the contraction Fµ. As

the annulus represented by T× I contains Aµ, it is enough to show that, under
iteration of Fµ, every point of T× I is attracted by the graph of ψµ.
But this follows immediately from the fact that under iteration of Fµ the con-
stant map θ 7→ 1 tends to ψµ.

Finally, the assertion concerning the regularity of the invariant curve is proved
in the same way, the only change being the choice of the functional space : one
takes the space of functions ψ : T → I of classe Ck with the kth derivative
Lispchitz with Lipschitz constant less than 1.

Exercise 4 Such a space is complete when endowed with the C0 topology.

This ends the proof of Theorem 3.

Exercise 5 In order to prove Theorem 3 when λ50 = 1, we start from a family
of normal forms at order 4 as follows:





Fµ(z) = Nµ(z) +O(|z|5), where
Nµ(z) = λ(µ)z + α(µ)z2z̄ + β(µ)z̄4, and

α(µ) = λ(0)(−1 + 2πib) +O(|µ|), λ(µ) = (1 + µ)e2πiω(µ), ω(µ) = ω +O(|µ|).

1) Making the change of coordinates z = r0(µ)(1 +
√
µσ)e2πiθ, where r0(µ) is

the radius of circle which is left invariant by the normal form at order 3 (i.e.

11



deprived of the term β(µ)z̄4), show that Fµ takes the form (σ, θ) 7→ (Σ,Θ), with





Σ = (1− 2µ)σ + µf(θ) +O(|µ|3/2),
Θ = θ + θ0 + µθ2 +O(|µ|3/2),

with f(θ +
1

5
) = f(θ) and 5θ0 ∈ Z.

2) Complete the proof of Theorem [?] by finding a change of coordinates
(
σ, θ) 7→

(σ̃ = σ+ g(θ), θ
)
, with g satisfying g(θ) = g(θ+ 1

5 ), such that in the coordinates
(σ̃, θ) the family Fµ takes the same form as in the case λ50 ̸= 1, that is

Fµ(σ̃, θ) =
(
(1− 2µ)σ̃ + µ3/2H(σ̃, θ, µ), θ + ω(µ) + µ3/2K(σ, θ, µ)

)
.

1.2.2 Dynamics on the invariant curves

In conclusion, from the “radial” hypothesis a1(0) < 0 we have obtained a com-
plete control on the radial dynamics of Fµ in a uniform neighborhood V of 0
(i.e. figure 3 is still pertinent to describe the normal dynamics of Fµ), but we
have no control of the dynamics restricted to the invariant curves. Indeed, this
dynamics may be a “generic” dynamics of a diffeomorphism of the circle (see
section 2). To be more precise we should add another “generic” assumption, this
time on the “angular” part of F , namely that b1(0) ̸= 0, for example b1(0) > 0.
This implies that, for µ close enough to 0, the restriction of the normal form Nµ
to its invariant circle Cµ is a rotation whose angle increases with µ. The two-
parameter family fω,µ of diffeomorphisms of the circle defined by the restriction
of Fµ to its invariant curve Γµ, the other parameter being ω, behaves in general
as does Arnold’s family Tω,µ, introduced in [A3] (see section 2.8):

Tω,µ(θ) = θ + ω + µ cos 2πθ.

1.2.3 A case of strong resonance

We give a hint of what happens in the case of a third order resonance λ = λ0
such that λ30 = 1. The procedure used in the proof of Theorem 1 yields a local
diffeomorphism

H : (C, 0) → (C, 0), ζ 7→ z = H(ζ) = ζ +O(|ζ|2)

such that

H ◦ F ◦H−1(z) = N(z) +O(|z|3), where N(z) = λ0z + c0z
2.

The first resonant term dominates the non linear terms of the normal form which
are invariant under rotation. Even if studying precisely the dynamics of F (or
even of N) does not look easy, it is possible to understand the main feature of
the dynamics of perturbations, namely the appearance when c0 ̸= 0, in place of
an invariant closed curve, of periodic points of order 3. It is natural to use as a

12



parameter the eigenvalue λ ∈ C in a neighborhood of λ0. The same change of
variables, depending now on λ yields a 2-parameter family of the form

Gλ(z) = Hλ ◦ Fλ ◦H−1
λ (z) = λz + c(λ)z2 +O(|z|3).

with c(λ0) = c. A periodic orbit of period 3 of Gλ is made of fixed points of G3
λ,

that is of solutions z of

G3
λ(z)− z = (λ3 − 1)z + (λ2 + λ

4
+ λλ

2
)c(λ)z2 +O(|z|3)

= 3λ20re
i(β+φ)

(
µ+ Crei(α−β−3φ) +O(µ2 + µr + r2)

)
= 0,

where we have noted

z = reiφ, λ− λ0 = µeiβ , c0 = Ceiα, with r, µ, C ≥ 0.

Exercise 6 Using the implicit function theorem, show that for λ close to λ0
there are exactly three fixed points of G3

λ near 0 and that these points tend to
0 when λ tend to λ0. Indication: noting φ0 = 1

3

(
α − β + (2k + 1)π

)
and

fixing β and the integer k, set µ = Cr(1 + µ1), φ = φ0 + φ1 and look for a
solution in the form r 7→

(
µ1(r), φ1(r)

)
of the equations in the neighborhood of

r = 0, µ1 = 0, φ1 = 0.

As suggested by Arnold in [A1], a more tractable way of studying F in the
neighborhood of the origin is to consider it, after a local change variables, as
a perturbation of the composition P0(z) = λ0X

1(z) of the rotation z 7→ λ0z
with the time one map X1 of the differential equation (X) : ż = cz̄2, which
is invariant under this rotation. Figure 6 displays the dynamics of P0 when
λ0 = e

2πi
3 and c is real: the lines θ = 2kπ

3 , k = 0, 1, 2 are cyclically permuted
and the origin is neither an attractor nor a repellor. Next we deform P0 into
the family

Pϵ(z) = λ0X
1
ϵ (z), where (Xϵ) : ż = ϵz + cz̄2;

if ϵ is real, the lines θ = 2kπ
3 , k = 0, 1, 2 are still cyclically permuted but, if

ϵ ̸= 0, periodic points of order 3 appear on them.

Figure 6. Dynamics of P
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Finally, figure 7 reproduces the phase portrait, given by Arnold in [A1], of the
family (parametrized by ϵ ∈ C) of vector-fields with the next term invariant
under the rotation by 2π/3 added, that is:

ż = ϵz + cz̄2 +Az|z|2, ReA < 0.

Fig. 7, borrowed from [A1].

Remarks. 1) The case λ2 = 1 is well understood. The case λ4 = 1, say λ = i,
is subtler because then a local change of variables can only achieve

H◦F◦H−1(z) = N(z)+O(|z|4), where N(z) = λ(1+a1|z|2)e2πi(1/4+b1|z|2)+cz3,
and there is a competition between the resonant terms of order 3 (See [A1, I]).

2) In the case of mappings, the phase portrait will be more complicated in
general; in particular, in some regions of the parameters, transverse intersections
of stable and unstable manifolds of periodic points as on figure 8 will occur.

Fig. 8. Transverse intersection of invariant manifolds
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Exercise 7 (hard) Supposing λ30 = 1, compare as much as possible the dy-
namics of F (z) = λ0z + c0z

2 + a1z|z|2 +O(|z|4)) in a neighborhood of 0 to the
one described in Figure 7.

Exercise 8 Instead of solving directly the equation F 3
λ(z) = z, , try, as is done

in [I], to solve the system

Fλ(z1) = z2, Fλ(z2) = z3, Fλ(z3) = z1.

Indication. Il is helpful to use the following variables:

u1 = z1 + z2 + z3, u2 = z1 + λ0z2 + λ20z3, u3 = z1 + λ20z2 + λ40z3.

The advantage is that the periodic orbits of Fλ will naturally coincide with orbits
of a rotation of order 3.

Exercise 9 (Normal forms of vector-fields in the neighborhood of a zero)
We consider now a differential equation

dX

dt
=AX + F (X), X = (x1, . . . , xn) ∈ Rn, A ∈ L(Rn,Rn),

F = (f1, . . . , fn), fi(X) = O(||X||2), i = 1, . . . , n.

Let H : Rn, 0 → Rn, 0 be a local diffeomorphism of the form

Y = H(X) = X + h(X), h = (h1, . . . , hn),

where the hi are homogneous polynomials of the same degree r ≥ 2. Show that
the transformed equation is

dY

dt
= AY+F (Y )+[A, h](Y )+O(||X||r+1), where [A, h](Y ) = Dh(Y )AY−Ah(Y ).

When A = diag(λ1, . . . , λn), show that the kernel of the operator h 7→ [A, h] is
generated by terms of the form h = (h1, . . . , hn) such that

hi = 0 if i ̸= s, hs((Y ) = yi1 . . . yin , with i1+. . .+in = s, i1λ1+. . .+inλn−λs = 0.

As in the case of diffeomorphisms, relations i1λ1 + . . . + inλn − λs = 0 are
called resonance relations. Conclude to the existence of normal forms of the
differential equation at any order (or even formal), where only resonant terms
can be different from zero. Study in particular the following two cases:
1) a differential equation in the plane C = R2 of the form dz

dt = iωz + F (z, z̄);
2) a differential equation in C2 = R4 of the form

dz1
dt

= iω1z + F1(z1, z2, z̄1, z̄2),
dz2
dt

= iω2z + F2(z1, z2, z̄1, z̄2)

when there exists integers l,m such that lω1 = mω2.
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1.3 The area preserving case

When F is area preserving, the dynamics, being dictated by the angular behav-
ior, is more intricate. Coming back to theorem 1, we notice that the radial part
1 + f(|z|2) of the normal form must be trivial, that is f ≡ 0; indeed if not, the
image by F of a closed curve close enough to the fixed point would be contained
in the interior or the exterior of the disc bounded by this curve, which would
contradict the preservation of area. We start proving the

Proposition 5 If, in addition to the hypotheses of theorem 1, the local diffeo-
morphism F is area preserving, the local change of coordinates H can be chosen
area preserving.

Proof. The proof is by induction: there are two cases according to whether the
induction hypothesis is that there exists an area preserving change of coordinates
H such that (see theorem 1)

H ◦ F ◦H−1(z) =Nn(z) +O(|z|2n+2), (resp.O(|z|2n+3)),

where Nn(z) = ze2πi(ω+gn(|z|
2)).

We start with the first case; performing this change of coordinates and calling
again F (instead of H ◦F ◦H−1) the result, that is F (z) = Nn(z)+O(|z|2n+2),
we notice that F ◦N−1

n being composed of two area preserving local diffeomor-
phisms, is itself area preserving. Writing

F ◦N−1
n (z) = z +R(z, z) +O(|z|2n+3),

where R(z, z) is a homogeneous polynomial of degree 2n+ 2, we get

F (z) = Nn(z) +R(λz, λz) +O(|z|2n+3).

Now, if λ2n+3 ̸= 1, theorem 1 asserts the existence of a unique local diffeomor-
phism Hn+1 = Id+ h, with h homogeneous of degree 2n+ 2 such that

Hn+1 ◦ F ◦H−1
n+1(z) = Nn(z) +O(|z|2n+3).

By a computation similar to the one in the proof of theorem 1, the condition
on h is

λh(z, z)− h(λz, λz) = R(λz, λz).

Now, the fact that F ◦N−1
n is area preserving is equivalent to the determinant

of its derivative being identically equal to 1. Writing

z = x+ iy, F ◦N−1
n (z) = Z = X + iY, R = A+ iB,

and recalling that the derivative at Identity of the determinant function is the
trace, we get the that ∂A

∂x (x, y) +
∂B
∂y (x, y) ≡ 0, which is equivalent to ∂R

∂z (z)

being purely real (recall that ∂R
∂z = 1

2

[
∂R
∂x − i∂R∂y

]
).
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Lemma 6 Writing h = U + iV , one has ∂U
∂x + ∂V

∂y ≡ 0. In other words, the
local diffeomorphism Hn = Id+ h preserves area at first order.

Proof. This is, as we know, equivalent to ∂h
∂z (z, z) being purely imaginary for

all z. But, taking the derivative of the equation satisfied by h, it follows only
that

∂h

∂z
(z, z)− ∂h

∂z
(λz, λz) =

∂R

∂z
(λz, λz) is purely imaginary for all z.

Nevertheless, this implies the conclusion: let

R(z, z) =
∑

i+j=2n+2

aijz
izj , h(z, z) =

∑

i+j=2n+2

bijz
izj .

That ∂R
∂z is purely imaginary is equivalent to

(i+ 1)ai+1,j + (j + 1)aj+1,i = 0.

Now, using the fact that h is such that λiλ
j
aij = (λ − λiλ

j
)bij , a direct com-

putation shows that

(i+ 1)bi+1,j + (j + 1)bj+1,i = 0,

that is: ∂h
∂z is purely imaginary, which is the conclusion.

Now comes the main point of the proof of proposition 5, which is inspired by
the theory of generating functions in symplectic geometry (see [C2], section 3.3).
We replace the local diffeomorphism Hn(x, y) =

(
x+U(x, y), y+V (x, y)

)
which

preserves area at first order only by

H̃n(x, y) = (X,Y ) = Hn(x, y) +O(|z|2n+3)

implicitely defined by the equations:

X = x+ U(x, Y ), y = Y − V (x, Y ).

The condition of preservation of area by H̃n is

dX ∧ dY − dx ∧ dy =

(
∂U

∂x
(x, Y ) +

∂V

∂y
)(x, Y )

)
dx ∧ dY = 0,

which is satisfied thanks to lemma 6.

In the second case, one starts with F (z) = Nn(z) + O(|z|2n+3) . If λ2n+4 ̸= 1,
theorem 1 asserts the existence of a local diffeomorphism Hn+1 = Id+ h, with
h homogeneous of degree 2n+ 3 such that

Hn+1 ◦ F ◦H−1
n+1(z) = Nn+1(z) +O(|z|2n+4).

The difference with the first case is thatHn+1 is not unique: resonant monomials
bi+1,iz|z|i are not determined but only one choice is such that Hn+1 preserves
area at first order, namely choosing bi+1,i purely imaginary.
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1.3.1 Moser’s invariant curve theorem ([M])

We now suppose that, in addition to satisfying λq ̸= 1 for all integers 1 ≤ q ≤ 4,
F is area preserving. We have just proved that the radial component f of the
normal form N vanishes identically and that one can choose H area preserving.
Hence, one is reduced to the study in the neighborhood of its elliptic fixed point
0 of an area preserving diffeomorphism of C, 0 of the form

F (z) = N(z) +O(|z|4), N(z) = ze2πi(ω+b1|z|
2).

The normal form N is called a truncated Birkhoff normal form. Dynamically, it
is an integrable monotone twist provided we suppose that b1 ̸= 0: as well as the
rotation dF (0), it leaves invariant each circle Cr centered at 0 but the angle of
rotation 2π(ω + b1r

2) on Cr varies now monotonically with the radius r of this
circle

Poincaré, while studying the three body problem, became aware of a funda-
mental difference between the invariant circles on which N induces a periodic
(ω + b1r

2 rational) or non periodic (ω + b1r
2 irrrational) rotation: in the first

case (angle 2πω = 2πp/q) the invariant circle is simply the union of a conti-
nous family of q-periodic points z (i.e. of points z such that Nq(z) = z); in
consequence, a small perturbation should in general break such a circle, with
only a finite number of periodic points surviving the perturbation (see more
generally section 3). On the other hand, if ω is irrational, the invariant circle
being the closure ∪n≥0Nn(z) of an orbit has a dynamical origin and hence has
more chance to resist a perturbation. In the first volume of his famous book
The New Methods of Celestial Mechanics, Poincaré even ventured to write that
some arithmetic condition on ω could perhaps grant resistance to perturbations
of such an invariant circle but that he considered such a possibility as quite
improbable (see [C4] section 2.6).

Figure 9. Perturbation of a monotone twist ???

Nevertheless, after the pioneering work of Kolmogorov in 1954, the so-called
KAM theory (from the names of Kolmogorov, Arnold and Moser) showed that
indeed, what Poincaré deemed improbable was in fact a dominant phenomenon.
In the present case, the pertinent statement is the following
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Theorem 7 (Moser 1962) Given an area preserving diffeomorphism F as
above, given C > 0 and β > 0, there exists ϵ(C, β) > 0 such that each invariant
circle Cr0 of the normal form N such that its rotation angle 2πωr0 = 2π(ω+b1r

2
0)

satisfies the diophantine condition

∀ p

q
∈ Q,

∣∣∣∣ωr0 −
p

q

∣∣∣∣ ≥
C|ωr0 − ω|

|q|2+β and |ωr0 − ω| < ϵ(C, β)

will give rise to a smooth (resp. analytic) closed curve Γr0 invariant under F
and such that the restriction F |Γr0

of F is smoothly conjugate to the rotation of
angle 2πωr0 .

The initial proof of theorem 7 by Moser in 1962 was refined by Rüssmann
and Herman (see [He3]); the most transparent one (not the quickest one) is
based on a version of the so-called “hard implicit function theorem” (see [Ham])
adapted to the problem of small denominators well known to astronomers since
eighteenth century. The following consequence of area preservation, named
intersection property, is the key point: the image F (Γ) of a curve Γ surrounding
the origin cannot be disjoint from Γ. Note that such a property is preserved
even under changes of coordinates which do not preserve area. Fixing r = r0
satisfying the hypotheses of the theorem, one chooses coordinates centered on
Cr0 of the form:

z = r0
√
1 + σ e2πiθ.

The map F is now (as before we keep the same notation F )

F (σ, θ) =
(
σ +O(r40), θ + ωr0 + b1r

2
0σ +O(r40)

)
.

As a further simplification, one replaces σ by ρ = σ+O(r20) so that the formula
for F takes the form

F (ρ, θ) =
(
ρ+ φ(ρ, θ), θ + ωr0 + b1r

2
0ρ
)
,

where the perturbation φ is O(r40). Following Rüssmann, it is enough to look
for a curve of the form ρ = ψ(θ) which is sent by F to the translated curve
ρ = ψ(θ) + τ for some τ ∈ R. This is because the intersection property, still
valid after the changes of coordinates, implies that τ must be equal to 0. This
leads to the equation

ψ
(
g(θ)

)
+ τ = ψ(θ) + φ

(
ψ(θ), θ

)
, where g(θ) = θ + ωr0 + b1r

2
0ψ(θ).

Recall that in the dissipative case, the radial hypothesis a1(0) ̸= 0 implied the
existence of a curve invariant under Fµ with a prescribed normal dynamics.
Having now an angular hypothesis b1 ̸= 0, it is natural to look for invariant
curves of F with a prescribed angular dynamics. It turns out that the right
constraint to impose to the (translated) curve we are looking for is the existence
of a diffeomorphism h of the circle R/Z such that g(θ) = h−1 ◦Rωr0

◦ h(θ).
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Finally, defining ψ by ψ(θ) = 1
b1r20

[
h−1 ◦Rωr0

◦ h(θ)− θ − ωr0
]
, we must solve

F(φ, τ, h) := ψ(θ)− ψ(h−1 ◦Rωr0
◦ h(θ))− τ + φ(ψ(θ), θ) = 0

in the neighborhood of the solution (φ = 0, τ = 0, h = Id). This is typically a
“hard implicit function problem” (see [Ham]) because even the best diophantine
condition allows us only to invert the “derivative” of F in a weak sense (i.e. with
loss of a finite number of derivatives on the target space of the inverse).

Remark. One can check ([K, C2]) that Moser’s invariant curve theorem applies
to the Poincaré first return map on a surface of section of the planar circular
restricted three body problem with any large enough energy (i.e. Jacobi con-
stant) in the rotating frame. (see section 3.1) This implies stability in a strong
sense as the invariant tori corresponding to the invariant closed curves are of
codimension 1 in the energy surface and hence serve as barriers confining the
solutions. This is precisely because he lacked such a theorem that Poincaré tried
to prove such a stability result using barriers made from invariant manifolds of
periodic orbits, which lead to the famous error in the first version of his prize
winning Memoir on the Three-body problem (see [C4]).

Warning. Examples in [AK] show that an area preserving C∞-diffeomorphism
of the disk D2 with an elliptic fixed point such that ω is a Liouville number, too
well approximated by rational numbers, may have a very wild dynamics, with
dense orbits.
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2 Dynamics on the circle

Orientation preserving circle homeomorphisms (and diffeomorphisms) play a
central role in the theory of dynamical systems. They appear naturally as
return maps on a curve of section for differential equations without singular
points on the 2-dimensional torus T2. Poincaré emphasizes that the problem
posed by their study is simpler but reminiscent of problems which arise in Ce-
lestial Mechanics. He indeed introduced the main tool, the rotation number,
which allows comparison with the simplest homeomorphisms of the circle, the
rotations. Hence it is natural to start by studying the dynamics of rotations:

2.1 The dynamics of a rotation

Exercise 10 1) If α = p/q ∈ Q, any orbit of the rotation Rα : x 7→ x+α from
T 1 = R/Z to itself is periodic of minimal period q (the fraction p/q is supposed
to be irreducible) and Rqα = Identity.
2) If α is irrational, any orbit of Rα is dense in T 1

Hint for the proof of 2) Prove that the points of the orbit are two by two distincts
and use compacity to infer that there is an accumulation point. Conclude by
using the fact that any two rotations of the circle commute.

2.2 Lifting a homeomorphism of the circle to the real line

It is technically more convenient to deal with homeomorphisms of the real line,
which means working in the universal cover D0(T1) of the group Homeo+(T1)
of orientation preserving homeomorphisms of the circle:

Lemma 8 Each orientation preserving homeomorphism F : T1 → T1 lifts to
a homeomorphism f = IdR + φ : R → R which is the sum of the Identity
and a continuous 1-periodic function φ : R → R (which one identifies with
a continuous function φ : T1 → R). This means that π ◦ f = F ◦ π, where
π : R → T1 is the canonical projection. Two such lifts f1 and f2 differ by an
element z ∈ Z, that is: f2 = f1 + z.

Figure 10. Lifting a homeomorphism of the circle.
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Proof. The existence of f : R → R such that F ◦ π = π ◦ f follows formally
from elementary homotopy theory because R is contractible but it is essentially
obvious on the figure. If f is a lift, so is x 7→ fz(x) := f(x + z) whatever
be z ∈ Z. Indeed, π ◦ fz(x) = π ◦ f(x + z) = F ◦ π(x + z) = F ◦ π(x).
Moreover, being in the kernel of π, the difference fz − f has values in Z and
hence is constant; as F is bijective and orientation preserving, this implies that
f1(x) = f(x+ 1) = f(x) + 1. One concludes easily.

It follows from this lemma that the universal cover D0(T1) of Homeo+(T1) is

D0(T1) = {f : R → R, f increasing homeomorphism, f(x+ 1) = f(x) + 1}.

We endow D0(T1) with the distance

d(f, g) = max

(
max
x∈R

|f(x)− g(x)|,max
x∈R

|f−1(x)− g−1(x)|
)
.

Exercise 11 Show that D0(T1) is a topological group (i.e. that the maps (f, g) 7→
f ◦ g and f 7→ f−1 are continuous) and that it is complete.

Exercise 12 Prove the following proposition, which generalizes lemma 8 to ar-
bitrary continuous maps and to higher dimensions in the following way:

Proposition 9 Any continous map F : Tr → Tr admits a lift f : Rr → Rr
such that π ◦f = F ◦π. Moreover, there exists a unique linear map ℓ : Rr → Rr,
depending only on F and which is itself the lift of a map L : Tr → Tr, such that
any lift f of F is of the form f = ℓ+φ, where for any z ∈ Zr, φ(x+ z) = φ(x)
which means that φ may be identified with a map from Tr to Rr. In particular,
F and L are homotopic.

2.3 Poincaré’s rotation number

The rotation number of an orientation preserving homeomorphism of the circle
was defined in 1885 by Poincaré in the third part [P] of his series of papers on
the curves defined by differential equations.

We are interested in the behaviour of f ∈ D0(T1) under iteration. One sees by
induction that the k-th iterate fk of f can be expressed as a so-called Birkhoff
sum

fn = Id+ φn = Id+

n−1∑

i=0

φ ◦ f i.

Theorem 10 For all f ∈ D0(T1), the sequence of periodic functions 1
n (f

n−Id)
converges uniformly when n → ∞ to a real number ρ(f) ∈ R which is called
the rotation number of f . It follows that 1

nf
n converges to ρ(f) uniformly on

compact subsets.
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The map f 7→ 1
n (f

n − Id) = 1
n

∑n−1
i=0 φ ◦ f i being continuous from D0(T1) to

C0(T1) both endowed with the C0 topology, and the convergence to ρ(f) being
unifom, one deduces the important

Corollary 11 The map f 7→ ρ(f) is continuous from D0(T1) endowed with the
C0 topology to R.

The key to the proof of theorem 10 is the following lemma, based on the existence
of order and hence typical of dimension 1:

Lemma 12 Let f = Id+φ ∈ D0(T1). Letm = minx∈R φ(x), M = maxx∈R φ(x).
One has

0 ≤M −m < 1.

Proof. As φ is defined and continuous on the circle, there exist real numbers
xm and xM such that

φ(xm) = m, φ(xM ) =M, 0 ≤ xM − xm < 1.

Because f is a homeomorphism which sends an interval of length 1 onto an
interval of length 1, one has f(xM )−f(xm) < 1, i.e. M−m < 1−(xM−xm) < 1.

Corollary 13 For all x ∈ R, the sequence

un = fn(x)− x+ 1, n ≥ 1,

is subadditive, that is: un+m ≤ un + um.

Proof. Applying the lemma to fn = Id+φn ∈ D0(T1) and using the fact that
fn is increasing, we get

∀x, y ∈ R, y − x− 1 ≤ fn(y)− fn(x) ≤ y − x+ 1.

Taking y = fm(x) we get

un + um − 2 ≤ un+m ≤ un + um.

The following lemma is classical

Lemma 14 If (un)n≥1 is a subadditive sequence in R ∪ {−∞}, the sequence(
un

n

)
n≥1

converges in R ∪ {−∞} and

lim
n→∞

un
n

= inf
n≥1

un
n
.

Proof. Fix p ≥ 1. For every n ≥ p, write n = kp + r, 0 ≤ r < p and observe
that

un
n

≤ ukp + ur
n

≤ kup + ur
n

=
up

p+ r
k

+
ur
n
·
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When p being fixed, n = kp+ r tends to +∞, both r
k and ur

n tend to 0, hence

lim sup
n→∞

un
n

≤ up
p

and therefore lim sup
n→∞

un
n

≤ inf
p≥1

up
p

≤ lim inf
n→∞

un
n
.

Proof of theorem 10. From Corollary 13 and Lemma 14, one deduces that for
all x ∈ R, the sequence 1

n

(
fn(x) − x

)
converges in R ∪ {−∞}. Moreover, the

inequality used in the proof of the Corollary shows that the limit ρ(f) is inde-
pendent of x and that the convergence is uniform. Also, from the inequalities
un + um − 2 ≤ un+m ≤ un + um, one gets un−1 + u1 − 2 ≤ un ≤ un−1 + u1 and
by induction nu1 − 2n ≤ un ≤ nu1. It follows that u1 − 2 ≤ limn→∞

un

n ≤ u1,
that is

∀x ∈ R, f(x)− x− 1 ≤ ρ(f)) ≤ f(x)− x+ 1.

Exercise 13 Check that the same proof shows that the rotation number is still
well defined if f = Id + φ, not necessarily being a homeomorphism, is non
decreasing. The key is lemma 12 which does not hold in higher dimensions or
even for general continuous degree one maps from the circle to itself (section 4).

2.4 Rotation number and invariant measures

Let µ be a probability measure on T1 which is invariant under the homeomor-
phism f : T1 → T1 and let f = Id + φ ∈ D0(T1) be a lift of f . We have, for
any n ∈ N,

µ(fn − Id− nµ(φ)) = µ
(n−1∑

i=0

φ ◦ f i − nµ(φ)
)
= µ

(n−1∑

i=0

φ ◦ f i
)
− nµ(φ) = 0.

It follows that the function fn − Id− nµ(φ) must vanish somewhere. Applying
lemma 12 to fn ∈ D0T1 one gets that

max (fn − Id− nµ(φ))−min (fn − Id− nµ(φ)) < 1,

and hence
|fn − Id− nµ(φ)|C0 < 1.

This gives another proof of the uniform convergence of the sequence 1
n

(
fn−Id)

)

to a constant. Summarizing, we have proved

Proposition 15 Let f ∈ Homeo+(T1) and let f = Id + φ ∈ D0T1 be a lift
of f . The rotation number ρ(f) of f satisfies ρ(f) = µ(φ) for any f -invariant
probability measure on T1. One has

{
∀n, ∃xn ∈ R such that fn(xn)− xn − nρ(f) = 0,

∀x ∈ R, ∀n, −1 < fn(x)− x− nρ(f) < 1.

Moreover, changing the lift f of f does not change the class of ρ(f) in T1 = R/Z.
This class is called the rotation number ρ(f) of f .
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Only the last part concerning the behaviour of ρ(f) under a change of the lift
f remains to be proved: for this one notices that, as fn(x+ k) = fn(x) + k, if
g = f+k, one has gn(x) = fn(x)+nk and hence ρ(g) = ρ(f)+k. Alternatively,
one notices that, as the total mas of µ is 1, µ(φ+ k) = µ(φ) + k.

Corollary 16 If p ∈ Z and q ∈ N, q ≥ 1,





ρ(f) = p/q ⇐⇒ ∃xq, fq(xq) = xq + p,

ρ(f) > p/q ⇐⇒ ∀x ∈ R, fq(x) > x+ p,

ρ(f) < p/q ⇐⇒ ∀x ∈ R, fq(x) < x+ p,

Proof. If ρ(f) = p/q, Proposition 15 gives the existence of xq; if f
q(xq) = xq+p,

one has also fkq(xq) = xq + kp hence ρ(f) = limk→∞ 1
kq (f

kq(xq)− xq) = p/q.

If ρ(f) > p/q, ∃xq ∈ R, fq(xq) = xq+qρ(f) > xq+p. If for some x ∈ R we have
fq(x) ≤ x+p, the intermediate value theorem insures that there is some x′ ∈ R
such that fq(x′) = x′ + p, which implies that ρ(f) = p/q, a contradiction.

J.C. Yoccoz commented in a lecture that this Corollary gives a definition of the
rotation number in the spirit of the definition of real numbers by Dedekind,
while the definition by a limit is more in the spirit of Cauchy.

Lemma 17 A homeomorphism f ∈ D0(T1) with rotation number ρ(f) = p/q
is conjugate to the translation Rp/q if and only if fq = Rp.

Proof. If f = h−1 ◦ Rp/q ◦ h with h ∈ D0(T1), then fq = h−1 ◦ Rp ◦ h = Rp.

Conversely, if fq = Rp, one checks that h = 1
q

∑q−1
i=0

(
f i − ipq

)
belongs to

D0(T1) and conjugates f to Rp/q.

Proposition 18 (Structure implied by a rational rotation number) Let
f ∈ Homeo+(T1) be such that ρ(f) = p/q ∈ Q/Z (irreducible). 1) f has peri-
odic points of period q and every periodic point of f has minimal period q. 2)
The limit sets α(x) and ω(x) of any element x ∈ T1 are periodic orbits.

Proof. Let f ∈ D0(T1) be the lift of f whose rotation number is p/q ∈ R.
It follows from Corollary 16 that fq − p has a fixed point xq, and hence that

f
q
has a fixed point. If xq′ ∈ T1 is a periodic point of f of period q′, it lifts

to xq′ ∈ R such that fq
′
(xq′) = xq′ + p′; this implies that ρ(f) = p′/q′ = p/q,

hence that q′ = kq which shows that xq′ is a periodic point of g = fq − p of
period k. Now, the structure of elements g ∈ D0(T1) whose rotation number
is 0 is easily understood: the set Fix(g) of fixed points is closed and invariant
under integer translations. If ]a, b[ is a connected component of R \ Fix(g),
one deduces from the fact that g is increasing that if x ∈]a, b[, α(x) = a and
ω(x) = b (resp. α(x) = b and ω(x) = a) if g − Id is positive (resp. negative)
in the interval. This implies that the only periodic points are fixed points and
proves also the last part of the proposition.
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Proposition 19 (Invariance under semi-conjugacy) Let f, g ∈ D0(T1) such
that there exists a continuous map h = Id + φ ∈ C0(T1,R) (i.e. φ continuous
and 1-periodic) satisfying h◦f = g◦h (one says that f and g are semi-conjugated
or that g is a factor of f), then ρ(f) = ρ(g).

Proof. For any n, h ◦ fn = gn ◦ h, hence fn + φ ◦ fn = gn ◦ h and

1

n

(
fn − Id

)
+
φ ◦ fn
n

=
1

n
(gn − Id) ◦ h+

φ

n
,

hence the conclusion because φ is bounded. In particular, if f and g are
conjugated by h ∈ D0(T1), i.e. if g = h ◦ f ◦ h−1, they have the same rotation
number ρ(f) = ρ(g).

Exercise 14 If f and g are semi-conjugated in Homeo+(T1), that is if g =

h ◦ f ◦ h−1
, there exist lifts f, g, h to D0(T1) such that h ◦ f = g ◦ h.

Proposition 20 If f ; g ∈ D0(T1) commute, then ρ(f ◦ g) = ρ(f) + ρ(g).

Proof. It follows from ([C1], Corollary 17) that there exists a probability
measure on T1 which is invariant by both f and g. If f = Id+φ and g = Id+ψ,
one has f ◦ g = Id+ ψ + φ ◦ g, hence ρ(f ◦ g) = µ(ψ + φ ◦ g) = µ(ψ) + µ(φ) =
ρ(f) + ρ(g).

Exercise 15 Show that if f, g ∈ D0(T1) are lifts of two commuting elements
f, g ∈ Homeo+(T1), they also commute.

Hint: use that, if µ is a probability measure leaving both f and g invariant,
µ(f ◦ g − Id) = µ(g ◦ f − Id).

Proposition 21 (Structure implied by an irrational rotation number)
Let f ∈ Homeo+(T1) be such that ρ(f) ∈ (R\Q)/Z. 1) There exists a surjective
continuous map h : T1 → T1 such that h◦f = Rρ(f)◦h, i.e. f is semi-conjugated

to the corresponding rotation. 2) If f is not actually conjugated to the corre-
sponding rotation, there exists an invariant Cantor set X ⊂ T1 which is the
unique closed invariant minimal (for the inclusion) set. 3) Moreover X is at
the same time the set Ω(f) of non wandering points and the α-limit set α(x)
and the ω-limit set ω(x) of every x ∈ T1.

Proof. 1) Let µ be a f -invariant probability measure on T1. We shall still
use the notation µ for its lift to a positive Borel measure on R invariant under
integer translations (exercise: construct the lift); let f ∈ D0(T1) be a lift of f .
Let

h(x) = µ([0, x[).

As f has no periodic point, µ has no atomic mass hence h : R → R is a
continuous non decreasing function such that h(x+n) = h(x)+n for any n ∈ Z.
Hence it defines a continuous surjective map h : T1 → T1. The f -invariance of
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µ implies that h(f(x))−h(f(0)) = h(x)−h(0), that is h ◦ f = Rh(f(0))−h(0) ◦h.
Finally, proposition 19 insures that h(f(0))− h(0) = ρ(f).
2) The map h is a homeomorphism if it is strictly increasing, that is if the
support X of µ is the whole circle T1. If not, X is a closed invariant set without
isolated point (because µ has no atomic mass) whose image by h is T1; moreover,
the restriction h|X is injective except on the countable subset D ⊂ X formed
by the extremities of the connected components of the complement T1 ⊂ X.
Let M ⊂ T1 be a non empty closed f -invariant set. Because h is a semi-
conjugacy of f to the rotation Rρ(f), h(M) is invariant under this rotation,

hence h(M) = T1; as h is injective on X \D and non decreasing, this implies
that M must contain X \D. As X has no isolated point, the closure of X \D
is X, hence M ⊃ X which proves that X is the unique f -invariant minimal
closed set. It follows that X has no interior (otherwise its boundary would be
invariant, contradicting minimality of X), hence X is Cantor set.
3) Let I0 be a connected component of T1 \ X. Its iterates f

n
(I0) are also

connected components of T1 \X and hence are two by two disjoint because f
has no periodic point. This means that any x ∈ T1 \X is wandering, hence that
Ω(f) is contained in X and hence equal to it because X is minimal. Finally,
being minimal, Ω(f) coincides with ω(x) and α(x) for any x ∈ T1 .

Figure 11. Typical behavior with irrational rotation number.

Remark. This structure makes clear the following characterization of the rota-
tion number, which was indeed the first insight which led Poincaré to the proof
of its existence : if the rotation number ρ(f̄) is irrational, the circular order of
the points on each orbit of f̄ is the same as for the corresponding rotation Rρ(f̄)
to which f̄ is semi-conjugated.

2.5 Unique ergodicity and its consequence

Lemma 22 If α ∈ R \ Q, the Haar measure is the only probability measure
which is invariant under the rotation Rα : T1 → T1.
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Proof. The Haar measure µ on T1 is the direct image π∗λ of the Lebesgue
measure on the unit interval [0, 1]. The Riesz representation theorem insures
that it is well defined by its values on continuous functions φ : T1 → C :

∫

T1

φdµ =

∫

[0,1]

φ ◦ π dλ,

where π : [0, 1] → T1 = [0, 1]/(0 = 1) is the quotient projection.

1) As the Lebesgue measure is invariant under any translation of R, this measure
is invariant under any rotation of T1 and it is the only one with this property.
The proof is an easy exercise which consists in considering finer and finer parti-
tions of T1 into equal pieces which are obtained from one of them by rotations,
for example the half-open intervals

Cmk = π

([
k

2m
,
k + 1

2m

[)
,

and approach uniformly any continuous function φ : T1 → C by a family of
functions φm constant on the pieces of such partitions. One concludes because
two rotation-invariant probability measures take the same value on the φm.

2) To prove that the Haar measure is the only probability measure which is
invariant under the single “irrational” rotation Rα, we shall use exercise 10: let
φ : T1 → C be a continuous function and let µ be a Rα-invariant measure.
For any θ ∈ T1, there exists a sequence (nk)k∈N, which tends to +∞ such that
limk→∞Rnk

α = Rθ. As φ is uniformly continous, one deduces that
∫

T1

φ(Rθx)dµ(x) = lim
k→∞

∫

T1

φ(Rnk
α x)dµ(x)) =

∫

T1

φ(x)dµ(x).

Hence µ is invariant under the full group of rotations of Tr and one concludes
by 1).
This property of admiting a unique invariant probability measure is called
unique ergodicity (see [C1], section 5.4).

Proposition 23 (Carleman, Denjoy, Furstenberg) If f ∈ Homeo+(T1) has
an irrational rotation number, it is uniquely ergodic.

Proof. Let µ be a probabillity measure invariant by f̄ . Proposition 21, gives a
semi-conjugacy h of f to the rotation R = Rρ(f), that is h̄ ◦ f̄ = R ◦ h̄. Hence

h∗µ = h̄∗f̄∗µ = R∗h̄∗µ. By lemma 22 this implies that h̄∗µ is the Haar measure.

Let S ⊂ T1 be the set of points x such that h
−1

(x) is an interval. S is countable,
hence its Haar measure is 0. On the other hand, any f̄ -invariant probability
measure µ satisfies µ(h̄−1(S)) = 0 because the wandering open intervals are
disjoint, hence have measure 0, and their boundaries are countable, hence have
also measure zero because the absence of periodic points implies that µ has

no atoms. Finally, as h̄ : T1 \ h−1
(S) → T1 \ S is a bimeasurable bijection,

h̄ : (T1, µ) → T1, Haar) is a an isomorphism of measured space, which defines
uniquely the measure µ.
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The following characterization of unique ergodicity makes it very useful:

Proposition 24 Let T : X → X be a continuous map of a compact topological
space into itself. The following conditions are equivalent:
i) There is a unique probability measure on X which is invariant under T .

ii) For any continuous function f : X → C, the sequence 1
n

∑n−1
i=0 f ◦ T i con-

verges uniformly to a constant function.

Proof. Suppose there is a unique T -invariant probability measure µ and suppose
by contradiction that there is a real number ϵ > 0, a sequence

(
nk

)
k≥0

of integers

tending to +∞ and a sequence
(
xk

)
k≥0

of points of X such that for all k,

∣∣∣∣∣
1

nk

nk−1∑

i=0

f ◦ T i(xk)−
∫
f dµ

∣∣∣∣∣ > ϵ.

Let µk = 1
nk

∑nk−1
i=0 T i∗δxk

, where δxk
is the Dirac measure at xk. By compacity

of the space M(X) of Borel probability measures on X in the weak∗ topology
(see [C1], beginning of section 3), one can suppose that the sequence

(
µk

)
k≥0

converges weakly to a probability measure µ′ which is T -invariant because

||T∗µk − µk|| = || 1
nk

(
Tnk
∗ δxk

− δxk

)
|| ≤ 2

nk
.

This contradicts unicity because
∫
f dµ′ = limk→∞

∫
f dµk ̸=

∫
f dµ. For the

converse, if L(f) is the uniform limit of the sequence 1
n

∑n−1
i=0 f ◦ T i, each T -

invariant probability measure µ satisfies

L(f) =

∫
L(f)dµ = lim

n→∞

∫
1

n

n−1∑

i=0

f ◦ T idµ =
1

n

n−1∑

i=0

∫
f dµ =

∫
f dµ.

Corollary 25 Let f be a C1 diffeomorphism of T1 with an irrational rotation
number and let µ be its unique invariant probability measure. Then

lim
n→+∞

1

n
logDfn =

∫

T1

log(Df)dµ = 0.

In words, the derivative of the iterates of f has at most a subexponential growth.

Proof. As 1
n logDfn coincides with the Birkhoff sum 1

n

∑n−1
k=0 logDf ◦ fk, it

converges uniformly to
∫
T1 log(Df)dµ. This implies the result because, fn being

a diffeomorphism of T1, its average
∫
T1 Df

n = +1 (if f is orientation preserving)
but if

∫
T1 log(Df)dµ was strictly positive (resp. strictly negative), Dfn would

converge uniformly to +∞ (resp. to 0), which would be a contradiction. It
is a strengthening of this corollary, valid when slightly strengthening the C1

hypothesis on f , which plays the main part in the proof of Denjoy’s theorem 26
given in the next section. Notice that the argument in the proof of this corollary
makes critical use of the fact that the dimension is 1.
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2.6 Denjoy’s theorem

The behavior depicted in Proposition 21, is typical for homeomorphisms and
can occur even for some C1 diffeomorphisms (Denjoy examples, see 2.7) but it
cannot occur as soon as a little more regularity of the map is granted. More
precisely:

Theorem 26 (Denjoy [D]) A C1 diffeomorphism of the circle R/Z whose
derivative has bounded variation, and whose rotation number is irrational, is
topologically conjugate to the corresponding rotation. In particular, it has no
wandering domains.

Proof.
According to Proposition 21 it is enough to show that f has no wandering
domain. Let us suppose by contradiction that there exists one i.e. that there
exists an open subset of the circle which is the union of a countable set of disjoint
intervals In such that f sends In to In+1. Then for any i ∈ Z, f i sends I0 to Ii
and I−i to I0. As

∑
i∈Z l(Ii) < 1 (where l(Ii) is the Lebesgue measure on T1,

that is the length of any lift to R of Ii), we have that limi→±∞ l(Ii) = 0. Hence
we get a contradiction as soon as we can find a sequence qn of integers and a
positive constant K such that

qn → ∞, and ∀n ∈ N, ∀x ∈ T1, |logDfqn(x)| < K.

This will follow from applying the following proposition to φ = logDf :

Proposition 27 (Denjoy-Koksma inequality) Let f ∈ D0(T1) with rota-
tion number ρ(f) = α ∈ R \Q and let p

q ∈ Q be irreducible and such that

∣∣∣∣α− p

q

∣∣∣∣ <
1

q2
·

Let φ : T1 → R be continuous with bounded variation and let µ be a f̄ -invariant
probability measure on T1. One has

sup
x∈T1

∣∣∣∣∣

q−1∑

i=0

φ(f̄ i(x))− qµ(φ)

∣∣∣∣∣ < Var(φ)·

Indeed, this inequality implies the contradiction we are looking for thanks to
the two following assertions:

1) In proposition 27, if φ = logDf , one has µ(φ) = 0.

2) ∀α ∈ R \Q, ∃pn, qn → +∞ such that ∀n ∈ N,
∣∣∣α− pn

qn

∣∣∣ < 1
q2n
;

Assertion 1) is just corollary 25.

The proof of assertion 2) is classical: the most direct one is by using the so-
called Drichlet’s drawers principle: “if one has more socks than drawers, at
least one drawer contains two socks”. Here the socks are the Q + 1 elements
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0, α, 2α, . . . , Qα ∈ T1 and the drawers are theQ intervals [0, 1
Q ], [

1
Q ,

2
Q ], . . . , [

Q−1
Q , 1],

Q being an arbitrary integer. Hence there exists integers q1, q2 ≤ Q, p such that
|q1α−q2α−p| < 1

Q . Setting q = |q1−q2| we have q ≤ Q, hence |qα−p| < 1
Q ≤ 1

q .
As Q is arbitrary, the proof is complete.

A more informative proof is given by taking as pn
qn

the convergents of the con-

tinued fraction representation of α (see [Kh1]).

Proof of proposition 27.

Lemma 28 Let α ∈ R\Q and p
q ∈ Q be irreducible and such that

∣∣∣α− p
q

∣∣∣ < 1
q2 .

Setting αi = iα (mod 1), 0 ≤ αi < 1, there is exactly one of the αi, i = 1, . . . , q
in each interval ]kq ,

k+1
q [, 0 ≤ k ≤ q − 1.

Proof. Let us suppose that 0 < α − p
q <

1
q2 (the case − 1

q2 < α − p
q < 0 is

similar). If i = 1, . . . , q, we have

0 < iα− i
p

q
<

i

q2
≤ 1

q
.

As the fraction p
q is irreducible, the ip

q (mod 1) are all distinct: indeed, if
ip
q − jp

q = k ∈ Z, we have (i − j)p = kq which contradicts irreducibility. The

conclusion follows from the fact that, for all i, the point αi is at less than
1
q at

the right of ipq (mod 1).

We are ready to estimate the term
∣∣∣
∑q−1
i=0 φ(f̄

i(x))− qµ(φ)
∣∣∣ in proposition 27.

Replacing x by f̄−1(x), it is the same to estimate
∣∣∑q

i=1 φ(f̄
i(x))− qµ(φ)

∣∣.

Recall the semi-conjugacy h̄ : T1 → T1 defined in Proposition 21. Starting from
x ∈ T1 arbitrary, we choose q points y0 = x, y1, y2, . . . , yq−1 circularly ordered
on T1 and such that ∀i = 0, 1, . . . , q − 1,

h̄(yi) =
i

q
+ h(x), that is

∫ yki+1

yki

dµ(t) =
1

q
·

Such a choice, obviously not unique, is depicted on figure 12.

We have∣∣∣∣∣

q∑

i=1

φ(f̄ i(x))− qµ(φ)

∣∣∣∣∣ =
∣∣∣∣∣

q∑

i=1

[
φ(f̄ i(x))− q

∫ yki+1

yki

φ(t)dµ(t)

]∣∣∣∣∣

=

∣∣∣∣∣

q∑

i=1

q

∫ yki+1

yki

[
φ(f̄ i(x))− φ(t)

]
dµ(t)

∣∣∣∣∣

≤
q∑

i=1

q

∣∣∣∣∣

∫ yki+1

yki

[
φ(f̄ i(x))− φ(t)

]
dµ(t)

∣∣∣∣∣

≤
q∑

i=1

q × 1

q
× sup
t∈[yki

,yki+1]

∣∣φ(f̄ i(x))− φ(t)
∣∣

≤ Var (φ).
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Figure 12. Choice of the yi.

Exercise 16 Show that the space of functions on T1 with bounded variation is
dense in the space C0(T1) of continuous functions endowed with the topology of
uniform convergence. Notice then that Proposition 27 implies unicity of the in-
variant probability measure µ of a homeomorphism of T1 whose rotation number
is irrational.

Remark. One remarkable feature of Denjoy’s theorem is that, if the rotation
number α is too well approximated by rationals, the conjugacy equation lin-
earized at the rotation with rotation number α has not always a solution. More
precisely, let us write f(x) = x + α + δf(x) and look for a diffeomorphism
h(x) = x+ δh(x) such that h ◦ f = Rα ◦ h, that is

x+ α+ δf(x) + δh
(
x+ α+ δf(x)

)
= x+ α+ δh(x).

Forgetting terms of order at least 2 in δf, δh and their derivatives, we get the
so-called homological equation

δh(x+ α)− δh(x) = −δf(x).

Supposing δf of class Cr, and writing its Fourier series δf(x) =
∑
k∈Z ake

2πix,
we get that a0 must vanish and the Fourier series

∑
k∈Z bke

2πix of δh must
satisfy

∀k ∈ Z \ 0, bk =
ak

e2πkα − 1
·
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The condition a0 = 0 would be taken care of by the condition that the rotation
number of f be α but for the other coefficients arises the problem of small
denominators: if α is too well approximated by rational numbers, they become
arbitrarily large and the Fourier series of δh diverges. Nevertheless, for almost
all α in the sense of Lebesgue measure, the ones satisfying a so-called diophantine
hypothesis

∃C > 0 such that ∀p
q
∈ Q,

∣∣∣∣α− p

q

∣∣∣∣ >
C

q2+ϵ

(as in Theorem 7), the homological equation can be solved with only a finite
loss of differentiability.

And indeed, a fundamental strengthening of this theorem has been given in
Herman’s thesis [He1] with further development by Yoccoz: under such a dio-
phantine hypothesis on the rotation number, the conjugacy is Cr−2 (resp. C∞,
resp. analytic) if f is Cr, r ≥ 3, resp. C∞, resp. analytic). A local version, for
f close to the corresponding rotation had been given first by Arnold in [A3].

2.7 Denjoy’s C1 counterexamples

[after [R]] An irational number α ∈]0, 1[ being given, the problem is to construct
a C1 diffeomorphism f of T1 whose dynamics is the one described on figure 11:
one must construct a sequence of open intervals (In ⊂ T1)n∈Z, with total length∑
n∈Z l(In) = 1 and such that once ordered as the orbits of the rotation Rα,

they satisfy f(In) = In+1.

We start with a sequence (ln)n∈Z, of positive real numbers which satisfy

∑

n∈Z
ln = 1 and lim

n→±∞
ln
ln+1

= 1, for example ln =
1

(1 + n2)
∑+∞

−∞

(
1

1+n2

) ,

and, noting nα (mod 1) = αn ⊂ [0, 1[, we define

In = [bn, cn], bn =
∑

m,αm<αn

lm, cn =
∑

m,αm≤αn

lm.

On the one hand, l(In) = ln, on the other hand, the In are disjoint and ordered
as the orbits of the rotation Rα: this follows from the obvious implication

(αn < αp) ⇒ (cn < bp).

Now, one must construct the restrictions fn = f |In : In → In+1 in such a way
that their extension by continuity to the whole circle be of class C1. To get a C0

extension, linear maps fn would be sufficient; in order to get C1 we must chose
the fn more carefully. Precisely, we chose their derivatives f ′n : In →]0,+∞] so
that
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1) lim f ′n(t) = 1 if t→ bn and t→ cn,

2) lim f ′n(t) = 1 uniformly when n→ ±∞,

3)

∫

In

f ′n(s)ds = ln+1.

Notice that condition 2) is realizable because limn→±∞
ln
ln+1

= 1.

One extends continuously the f ′n to a map f ′ : R →]0,+∞[ by setting

f ′(t) = 1 for t ∈ [0, 1[\(∪n∈ZIn) and f ′(t+ 1) = f ′(t),

and one defines f : R → R by

f(t) = b1 +

∫ t

0

f ′(s)ds.

By construction, f : R → R is a C1 diffeomorphism such that f(t+1) = f(t)+1

Lemma 29

f(In) =

{
In+1 if αn < 1− α,

In+1 translated by +1 if αn ≥ 1− α.

Proof. As
∫
In
f ′n(s)ds = ln+1, the assertion on f(cn) follows from the one on

f(bn). As ∪n∈ZIn has full measure in T1, one has

f(bn) = b1 +

∫ bn

0

f ′(s)ds = b1 + f(
∑

m,αm<αn

lm) = b1 +
∑

m,αm<αn

lm+1.

1) If αn < 1− α, that is if αn+1 = αn + α > α,

{m, αm < αn} = {m, α < αm+1 < αn+1}.

Figure 13.
Indeed, see figure 13, αm < αn implies αm+1 = αm + α < αn + α = αn+1 and
αm+1 > α. Conversely, if αm+1 < αn+1 and αm+1 > α, then αm = αm+1−α <
αn+1 − α = αn. Finally,

f(bn) = b1 +
∑

m,αm+1<αn+1

lm+1 −
∑

m,αm+1<α

lm+1 = b1 + bn+1 − b1 = bn+1.
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2) if αn > 1− α, that is if αn+1 = αn + α− 1 < α,

{m,αm < αn} = {m,αm+1 < αn+1} ∪ {m,αm+1 > α}.

Figure 14.

Indeed, either αm+1 < αn+1 < α (Figure 14(i)),
then αm = αm+1 + 1− α < αn+1 + 1− α = αn ;

or αm+1 > αn+1 = αn + α− 1 ; in this case,

either αm+1 > α, which implies that αm = αm+1 − α < 1 − α < αn (Figure
14(ii)),

or αm+1 < α but then αm = αm+1 − α+ 1 > αn+1 − α+ 1 = αn.

Finally,

f(bn) = b1+
∑

m,αm+1<αn+1

lm+1+
∑

m,αm+1≥α
lm+1 = b1+bn+1+(1−b1) = bn+1+1.

It remains to prove that the rotation number of f is indeed α: by induction, let
us prove that f(0) = b1 and fn(0) = [nα] + bn, where [x] ≤ x is the integral
part of the real number x:

f (n+1)(0) = f([nα] + bn) = [nα] + f(bn)

=

{
[nα] + bn+1 = [(n+ 1)α] + bn+1 if αn < 1− α,

[nα] + bn+1 + 1 = [(n+ 1)α] + bn+1 if αn ≥ 1− α.

One concludes because this implies

|fn(0)− nα| = |bn − αn| < 1.

2.7.1 Further refinements

1) There exist C∞ homeomorphisms which are Denjoy conunterexamples ([Ha])

2) There are no analytic homeomorphisms which are Denjoy conunterexamples
([Y2])
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2.8 The Arnold 1-parameter family

The analytic family of analytic diffeomorphisms ft,a : T1 → T1 defined by

ft,a(x) = x+ a sin(2πx) + t, t ∈ R, 0 ≤ a <
1

2π
,

was introduced in [A3] and further studied in [He2]. Figure 15 shows the be-
havior of the rotation number ρ(ft,a) as a fonction of the parameters (t, a) :
for a > 0, the function t 7→ ρ(ft,a) is non decreasing and its graph is a devil’s
staircase.

Figure 15. Arnold’s tongues.

Moreover, for a fixed value of a, the set of t for which the rotation number of ft
is rational is big in the sense of topology, namely it is open and dense, but its
complement is big in the sense of measure, namely, its measure tends to 1 when
a→ 0. As already said in section 1.2.2, this example is a good illustration of the
types of dynamics encountered in a “generic” family of analytic diffeomorphisms.

We now prove these assertions. Let us consider the partial order on functions
from R to R defined by

f ≥ g iff ∀x ∈ R, f(x) ≥ g(x).

Lemma 30 The map f 7→ ρ(f) from D0(T1) to R is non decreasing and con-
tinuous.

Proof. Both properties are direct consequences of the definition of ρ as a uniform
limit.

Let us call ρa : R → R the function t 7→ ρ(ft,a).

Proposition 31 For each a ∈]0, 1
2π [ and each p

q ∈ Q, ρ−1
a (pq ) is a closed in-

terval with a non empty interior.

Proof. The fact that ρ−1
a (pq ) is connected is a direct consequence of the above

lemma. The assertion about the interior is proved by contradiction: let us
suppose that ρ−1

a (pq ) = {t0} is reduced to a single point; then, by Corollary 16,

(fqa,t−Rp)(x) must be strictly negative for all x if t < t0 and strictly positive for
all x if t > t0, which implies that fqa,t0 −Rp must vanish identically. By lemma
17, this is equivalent to the fact that fa,t0 is conjugated to R p

q
. That this is not

the case follows from the next lemma:
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Lemma 32 If a > 0, fqa,t −Rp never vanishes identically.

Proof. For each (a, t), fa,t extends to an entire function f : C → C. If the
identity fqa,t −Rp holds in the real domain, it also holds for the extension, that
is (fq −Rp)(z) = 0 for all z ∈ C, or (R−p ◦ fq−1) ◦ f = IdC. Hence f should be
a biholomorphic diffeomorphism of C, that is of the form f(z) = αz + β with
α ̸= 0. But this implies a = 0.

This ends the proof of Proposition 31. The components of ∪a≥0ρ
−1
a (Q) are

called Arnold’s tongues.

Proposition 33 If ρa(t0) ∈ R \Q, the function ρa is strictly increasing at t0.

Proof. By Denjoy’s theorem 26, if ρ(ft,a) = α is irrational, there exists a
homeomorphism h such that ft,a = h◦Rα◦h−1. Let us suppose that ρ(ft′,a) = α;
writing Rt′−t = ft′,a ◦ (ft,a)−1, we get t′ − t = 0 as an immediate consequence
ot the following lemma:

Lemma 34 Let f1, f2 ∈ D0(T1) be such that ρ(f1) = ρ(f2) = α ∈ R. If f2 is
C0-conjugated to Rα, then f1 ◦ f−1

2 has a fixed point.

Proof. [of lemma 34] If f2 = h ◦ Rα ◦ h−1, by conjugacy, it is enough to show
that (h−1 ◦ f1 ◦ h) ◦ R−1

α has a fixed point. In other words we are reduced to
the case where f2 = Rα. But then, the conclusion follows from proposition 15
whihc insures the existence of a fixed point x of R−1

α ◦ f1, hence of the fixed
point Rαx of f1 ◦R−1

α .
Remark. Lemma 34 still holds without the hypothesis that f2 be C

0-conjugated
to the rotation (see [He1] (4.1.1)).

From propositions 31 and 33 follows the

Corollary 35 If a > 0, the subset Int
(
ρ−1
a (Q)

)
⊂ R is open and dense (and

hence its complement is a perfect and totally discontinuous subset).

Hence for a > 0, the graph of t 7→ ρa(t) is a continuous non decreasing Cantor
like function whose graph is a so-called devil’s stair. But, as proved locally
by Arnold and globally by Herman, unless the original Cantor function, the
subset where it strictly increases has positive Lebesgue measure. Let us call
ρ̄a : [0, 1] → [0, 1] the restriction of ρa to the interval [0, 1] :

Proposition 36 ([A3, He2]) For any a ̸= 0, the Lebesgue measure of the
Cantor set Ka = [0, 1] \ Intρ̄−1

a (Q) is strictly positive and it tends to 1 when a
tends to 0.

The starting point is the following

Exercise 17 At a rotation Rα, the map f 7→ ρ(f) from D0(T1) to R is Lipschitz
with Lipschitz constant 1.

The bulk of the proof rests on Arnold’s and Herman’s smooth conjugacy theo-
rems alluded to at the end of section 2.6.
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3 Dynamics of area preserving monotone twists

3.1 The big picture

Figure 16. The return map of the restricted 3-body problem at high Jacobi
constant (figure reproduced (slightly modified) with the kind permission of En-
cyclopædia Universalis).

The curves Γr0 given by theorem 7 form a Cantor family for which 0 is a density
point (the relative measure of the Cantor set in smaller and smaller neighbor-
hoods of 0 tends to 1). Nevertheless, this is far from being the whole story. The
dynamics of such a generic area preserving F in the complement of the invariant
curves (the so-called Birkhoff domains of instability) is extremely complicated
and, if the works of Birkhoff, Aubry, Mather, Herman, have shed considerable
light on the way invariant circles of the normal form break (periodic points,
invariant Cantor sets, see [K, He3, LC2] and the references they contain), many
questions remain.

Some of the complexity of a generic area preserving map of the disc is roughly
suggested in figure 16, taken from [C4]. It illustrates the dynamics of the mono-
tone twist map of the annulus which arises when studying the restricted three-
body problem at high values of the Jacobi constant (see section 6 of [C2] for
explanations). To the hyperbolic periodic points are attached invariant stable
(resp. unstable) manifolds along which the images of a point under the positive
(resp. negative) iterates of F converge exponentially fast to the periodic orbit
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while around he elliptic periodic points, the whole picture is reproduced. The
homoclinic tangles (see [S] and section 10 of [C4]) created by the intersections of
such invariant manifolds produce invariant Cantor sets on which the dynamics
of F is the same as the one of throwing a dice (more technically, a Bernoulli
shift, see [LC1, C1, KH]) and hence possesses positive topological entropy. Also,
orbits go from one boundary of a domain of instability to the other, but their
diffusion is blocked by the invariant curves.

3.2 Definition and first examples

Let A be the closed annulus T1 × [0, 1] 6. Let F = (F 1, F 2) : A → A be an
orientation preserving homeomorphism. We call (x ∈ T1, y ∈ R) the natural
coordinates in A. We shall note F = (F1, F2) a lift of F to the universal covering
A = R× [0, 1].

Figure 17.

Definition 37 The homeomorphism F is said to be a positive monotone twist
(in brief: a twist homeomorphism) if it preserves orientation and the boundary
components and if for a lift F (and hence for all) the map y 7→ F1(x, y) from
[0, 1] to R is strictly increasing. If moreover F preserves the standard Lebesgue
measure dxdy (or more generally a measure which weights positively any open
set) one says it is conservative.

In addition to the examples encountered in section 1 in the neighborhood of an
elliptic fixed point when b1 > 0, here are some examples.

(i) Linear torsion. A simple example is

F : A→ A, F (x, y) = (x+ y, y).

6The theory extends to the case where A is an open annulus T1 × (0, 1) or T1 × R but we
shall stick to the case of T1 × [0, 1]. See also remark 3.4.4.
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Figure 18.

(ii) Pendulum map. Another simple example is

F (x, y) = Rp/q ◦ φt = φt ◦Rp/q,

where Rp/q(x, y) = (x + p/q, y) and φt is the flow at a small positive time t of
the pendulum-type differential equation

ẍ+ ω2 sin(2πqx).

Figure 19, which illustrates the case p = 2, q = 3, features the level curves

of the conserved “energy” H(x, y) = 1
2y

2 − ω2

2πq cos(2πqx). To the singular
points of H correspond two isolated untertwined periodic orbits of period 3 and
rotation number p/q = 2/3, one hyperbolic, {z0, F (z0), F 2(z0)}, corresponding
to an unstable equilibrium of the pendulum, and one elliptic, {z1, F (z1), F 2(z1)},
corresponding to a stable equilibrium of the pendulum.

Figure 19. The pendulum map

(iii) Poincaré return maps associated to a Hamiltonian sytem As il-
lustrated in section 3.1, the study of the dynamics of such conservative maps
originates in the works of Henri Poincaré on the three-body problem.

There are many books introducing to Hamiltonian systems and their relation
with mechanics. A nice start is Arnold’s classical [A4]. For a short introduction
see [C2].
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3.3 The billiard map

Given a convex billiard table, i.e. a compact convex domain of R2 with smooth
boundary Γ , a billiard trajectory is made of straight segments which reflect on
Γ by changing the sign of the angle with the normal to Γ at the contact point.
Such a trajectory is naturally associated to a map T : A → A of the annulus
A = S1× [0, π] in the following way: let γ : [0, 2π] → R2 be a parametrization of
Γ by arclength t. To a couple (t, α) of a reflection point γ(t) and the reflection
angle α, the map T associates the couple (t1, α1) corresponding to the next
reflection.

Exercise 18 Compute the billiard map T for a billiard in a round disc.

Lemma 38 Let l(t, t1) be the length of the Euclidean chord between the points
γ(t) and γ(t1). One has

∂l

∂t
(t, t1) = − cosα,

∂l

∂t1
(t, t1) = cosα1

Proof. See figure 20 for a proof in the spirit of Newton.

Figure 20. A convex billiard table and the associated billiard map.

Corollary 39 T preserves orientation and the measure sinαdα ∧ dt.

Proof. dl = − cosαdt+cosα1dt1, hence 0 = d2l = sinα dα∧dt−sinα1dα1∧dt1.
If one chooses the variables r = cosα and t, then the billiard map preserves
orientation and the Lebesgue measure, that is the 2-form dr ∧ dt.

Exercise 19 Using figure 20 show that ∂t1
∂α (t, α) = l(t,t1)

sinα1
. Show that when α

tends to 0, this derivative tends to twice the radius of curvature of the billiard
table at the point γ(t).

We now show that the billiard map associated to an elliptic table is integrable
in the sense that it admits a conserved quantity. For this, following [Ta], it is
convenient to work with cartesian coordinates: the couple (t, α) will be identified
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with a couple (x, v) where x = (x1, x2) ∈ R2 describes the table’s boundary and
v = (v1, v2) is a unit vector directing the trajectory. Let

B(x, x) :=
x21
a21

+
x22
a22

= 1

be the equation of the table’s boundary

Lemma 40 The quantity 1
2B(x, v) = x1v1

a21
+ x2v2

a22
stays constant along a trajec-

tory of the elliptic billiard.

Proof. Writing T (x, v) = (x′, v′), notice that B(x′ + x, x′ − x) = 0, hence
B(x′ + x, v) = 0. On the other hand, B(x′, v′ + v) = 0 (see figure 21). Hence
B(x′, v′) = −B(x′, v) = B(x, v).

Figure 21. An elliptic billiard table and its conserved quantity (case a1 > a2).

The aim of the following exercise is to understand the nature of the simplest
periodic orbits of the billiard map in an ellipse: the semi-major and semi-minor
axes, which are the singularities of the conserved quantity defined in lemma 40.
The level curves of this function are represented on figure 21 in terms of the
parametrization of the domain of the billiard map by couples (θ, α) ∈ T1× [0, 1]
defined as follows: we parametrize the boundary by the excentric anomaly θ
and the set of unit velocitiy vectors by an angle φ, that is we set

x = (a1 cos θ, a2 sin θ), v = (cosφ, sinφ).

The reflexion angle α is then defined by the formula α = φ − φθ, where φθ is
the angle between the positive horizontal axis and the oriented tangent to the
boundary at x (see figure 21).

Exercise 20 1) Show that when θ tends to 0, one has

φθ =
π

2
+
a1
a2
θ +O2(θ).

2) Show that when α tends to π
2 , the leading non constant term of the conserved

quantity is proportional to

(a22 − a21)θ
2 + a22(α− π

2
)2.
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Deduce that the 2-periodic orbit defined by the semi-major (resp. semi-minor)
axis is unstable (resp. stable) (compare to figure 21 and see [Ta] for a geometric
interpretation).

Remark. The phenomenon which appears when deforming a circular billiard
into an elliptic one is the opening of a resonance zone, already well understood by
Poincaré as the potential source of “non integrability” (compare to the comment
on page 17): the invariant circle of the billiard map formed by the set of period
two trajectories along any diameter of the circle breaks down into a pair of
periodic trajectories along respectively the great and the small axis of the ellipse.
Integrability is still not destroyed but yet this is the first step along the path
which would, for a “generic” convex biliard table, transform the completely
integrable twist map with all circles invariant into the complicated “big picture”
of Figure 16.

Figure 21-1. Opening of a resonance zone

The classical interpretation of the integrability of the elliptic billiard is the fact
that any trajectory is tangent to a caustic, which is either a confocal ellipse or

a confocal hyperbola, whose equation is of the form
x2
1

a21+λ
+

x2
2

a22+λ
for some λ.

The elementary geometric proof ((see [Ta]) starts with the so-called focal prop-
erty of the ellipse:

Lemma 41 If a segment of a billiard trajectory contains a focus, then every
ssegment of this trajectory contains a focus.

Proof. Because of the convexity of the elllipse, for any point P ′ on the tangent
at P to the ellipse and any point Q on the ellipse, one has:

|P ′F1|+ |P ′F2| > |QF1|+ |QF2| = |PF1|+ |PF2|.

This implies that, if F ′
2 is the symmetric of F1 with respect to the tangent at P

to the ellipse, the points F2, P, F
′
2 must be collinear (figure 21bis), which proves

the lemma.
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Figure 21-2. Focal property

Exercise 21 Show that a billiard trajectory containing the foci must flatten in
both directions and tend to the line joining the foci.
To which curves in figure 21 (right) such trajectories correspond ?

The end of the proof is illustrated on the following figure in the case of elliptic
caustics; it consists in proving that two consecutive segments of the billiard
trajectory are tangent to the same confocal ellipse because the two colored
triangles are isometric, which implies |F ′

1F2| = |F1F
′2|, that is c1 = c2:

Figure 21-3. The proof
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Figure 21-4 shows elliptic and hyperbolic caustics.

Figure 21-4. Caustics

Billiard trajectories crossing the segment [F1F2] are tangent to hyperbolas and
the ones not crossing this segment are tangent to ellipses. The transition be-
tween the two kinds is made by the trajectories going through the foci, which
generate the so-called homoclinic orbits.

Exercise 22 To what curves in figure 21 (right) correspond the trajectories
tangent to a confocal ellipse and the ones tangent to a confocal hyperbola ?
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3.4 Aubry-Mather theory

In this section, we prove the existence of Birkhoff orbits and as a consequence
the existence of Aubry-Mather invariant sets for any monotone area preserving
twist map of the annulus. This generalizes Birkhoff results on the billard map.
An important generalization to higher dimensions exists : this is the so-called
Weak KAM theory.

3.4.1 Ordered invariant sets and Lipschitz estimates

In what follows, periodic orbits which are a natural generalization of the “hy-
perbolic” one in the pendulum map example (ii) will be obtained for a general
conservative twist map of the annulus as minima of a certain functional. Gen-
eralizations of the “elliptic” one can also be obtained as minimax. Such ideas
go back to Birkhoff’s works on billards and were developped by Aubry and Le
Daeron, Mather and Katok. We shall follow the simple proof given by Katok in
[K], which works with a slightly more general definition of the word “conserva-
tive” ; indeed, it will be sufficient to suppose that F preserves a measure which
is positive on open subsets.
The following definition, in which we follow [K], is directly inspired by the exam-
ple of the pendulum map described in section 3.2(ii) (just label the hyperbolic
– resp. elliptic – points in natural order):

Definition 42 Let p, q be relatively prime integers. A Birkhoff point of type
(p, q) is a point z0 = (x0, y0) in A whose orbit can be labeled in the following
way: there is a sequence zn = (xn, yn), n ∈ Z, in A, whose projection xn, n ∈ Z,
on R is strictly monotone and which satisfies

zn+p = F (zn), zn+q = zn + (1, 0).

This implies that the projection z0 of z0 on the annulus A is a periodic point
with rotation number p/q, that no two points of its orbits coincide and that
they are ordered as the points in the orbit of the rotation (x, y) 7→ (x+ p/q, y).
Such an orbit is the simplest example of a F -ordered set as defined below:

Definition 43 If F = (F1, F2) : A → A is the lift of a homeomorphism F of
the annulus A, a subset M of A is said to be F -ordered if
1) M is invariant under F and the integer translations T±1(x, y) = (x± 1, y);
2) the restriction to M of the projection π(x, y) = x is injective;
3) if (x, y) and (x′, y′) are two elements of M such that x < x′, one has
F1(x, y) < F1(x

′, y′).

Being invariant under integer translations, an F -ordered set M projects to a
F -ordered invariant set M ⊂ A.

Definition 44 A minimal closed F -ordered invariant set M ⊂ A will be called
an Aubry-Mather set.
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Exercise 23 Let M be an Aubry-Mather set of F and K ⊂ T1 be its projec-
tion on T1. Show that the restriction F |M respects the cyclic order on M and
conclude that it is conjugate by a homeomorphism to the restriction to K of a
homeomorphism of T1 and hence has a rotation number (in case of a Birkhoff
orbit of type (p, q), this rotation number is obviously equal to p/q (mod 1)). De-
duce from section 2.4 that M is
– either a Birkhoff periodic orbit,
– or an invariant curve on which F is conjugated to a rotation with irrational
rotation number (which means dense orbits),

– or an invariant Cantor set.

Figure 22. Aubry-Mather invariant sets

The fundamental property of F -ordered sets, whose origin goes back to Birkhoff’s
works on invariant curves, is stated in the following lemma for which we need a
definition

Definition 45 The homeomorphism f is a Lipschitz monotone twist map if f
and f−1 are Lipschitz and there exists a > 0 such that ωf (r) ≥ ar, where the
“twist modulus” ωf (r) is defined for 0 ≤ r ≤ 1 by

ωf (r) = min
0≤x≤1

min
0≤y≤1−r

min
(
F1(x, y + r)− F1(x, y), F̂1(x, y)− F̂1(x, y + r)

)
,

where F, F̂ are lifts of f and f−1 and the index 1 indicates the first coordinate.

Lemma 46 (Lipschitz estimates) Let F be the lift of a Lipschitz monotone
twist. There exists l > 0, depending only on F such that, if M is F -ordered and
if (x, y) and (x′, y′) belong to M , one has the uniform Lipshitz estimate

|y − y′| ≤ l|x− x′|.
Proof. Let us suppose that y > y′ (if not, replace F by F−1). The proof can
be read on figure 23 :

Figure 23. a(y − y′) ≤ x′′1 − x′1 ≤ x′′1 − x1 ≤ b(x′ − x).
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The first inequality comes from the twist modulus ωf (r) ≥ ar, the second one
from the fact that M is ordered, and the third one from the fact that F is
supposed to be Lipshitz (with Lipschitz constant b). In the perturbative case,
when F is close to an integrable map, one can get much better estimates for the
Lipschitz constant (see [He3].

Exercise 24 Deduce from the Lipschitz estimates that the closure of a F -ordered
subset is also F -ordered.

Interpolating linearly in the intervals of the complement of K in R leads to the

Corollary 47 Supposing F Lipschitz, any F -ordered subset M of A is con-
tained in a Lipschitz graph (of φ : R → [0, 1], resp. φ̄ : R → R) invariant under
integer translations, hence projecting to a Lipschitz graph (of φ : T1 → [0, 1],
resp. φ̄ : T1 → R) in Ā containing the projection M̄ of M .

Soon after Aubry and Mather had proved the existence of such invariant sets
for any rotation number, Katok made the fundamental remark that, because
of the Lipschitz estimates, the existence of Aubry-Mather sets of any irrational
rotation number did follow from the existence of Birkhoff periodic orbits (see
[K] and [KH] section 13.2). More precisely, recall the following

Definition 48 Let X be a compact metric space. The Hausdorff metric on the
set of closed subsets of X is defined by the formula

d(A,B) = sup
{
d(x,B), x ∈ A

}
+ sup

{
d(A, y), y ∈ B

}
.

Exercise 25 Show that the Hausdorff metric defines a compact topology on the
set of closed subsets of a compact metric space.

Exercise 26 Show that the set of all Aubry-Mather sets is closed in the Haus-
dorff topology and that the rotation number of an Aubry-Mather set is continuous
in this topology.

Hint 1: use the fact that each Aubry-Mather set M is contained in the graph of
a Lipschitz function Φ : T1 → [0, 1] whose Lipschitz constant is bounded above
by a quantity depending only on F and recall the Arzela-Ascoli theorem.

Hint 2: use continuity of the rotation number of a homeomorphism of the circle
under uniform limit.

From exercise 26 follows the

Proposition 49 Let F be a monotone twist homeomorphism of the annulus
which is Lipschitz and preserves a measure µ weighting positively open subsets.
Then, in order that F has an Aubry-Mather invariant set with rotation num-
ber ρ, it is sufficient that F has Birkhoff periodic orbits of type (pn, qn) for a
sequence pn/qn of rationals converging to ρ.

Remark. In [K], Katok shows that even if F is not Lipschitz, Birkhoff periodic
orbits and also Aubry-Mather sets are contained in graphs of continuous func-
tions with a modulus of continuity which depends only on F . This property
may be used in place of the Lipschit estimates and hence the conclusion of the
above Corollary holds without the hypothesis that F be Lipschitz.
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3.4.2 Existence of Birkhoff periodic orbits: the variational principle

Let F : A → A be a conservative monotone twist map, F : A → A is a lift to
the covering space. The preservation of orientation and of the measure dxdy
implies the preservation of the area 2-form dx ∧ dy. If F (x, y) = (x′, y′), this
can be written

dx′ ∧ dy′ = dx ∧ dy,
and implies (by the Poincaré lemma) the existence of a function h such that

dh(x, x′) = −y(x, x′)dx+ y′(x, x′)dx′,

where y = y(x, x′ and y′ = y′(x, x′) are uniquely defined by the condition that
F (x, y) = (x′, y′). On figure 24 is indicated a natural choice for h as the common
area of the hatched triangles. Indeed, for any choice of h this area is both equal
to h(x, x′) − h(x, f0(x)) and h(x, x′) − h(f−1

0 (x′), x′), which implies that it is
equal to h(x, x′) +C for some constant C (of course , it is also directly obvious
that both functions h(x, f0(x)) and h(f

−1
0 (x′), x′) are constant).

Conversely, h defines F by

F

(
x,−∂h

∂x
(x, x′)

)
=

(
x′,

∂h

∂x′
(x, x′)

)
.

Figure 24.

Of course, if A is the closed annulus, h is defined only in the subset B of R2

defined by
B = {(x, x′), f0(x) ≤ x′ ≤ f1(x)} ,

where f0 and f1 are the restrictions of F to the boundaries R×{0} and R×{1}
of A. Note that h is bounded below and such that h(x + 1, x′ + 1) = h(x, x′).
It is of class at least C2 and its hessian ∂2

∂x∂x′ is everywhere negative.

If p and q are integers, let Xp,q be the set of sequences

x = (xi)i∈Z such that ∀i ∈ Z, xi+q = xi + p.
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The embedding Xp,q → Rq defined by x 7→ (x0, · · · , xq−1) induces a topology
on Xp,q. Let W =W0,q : Xp,q → R be defined by

W (x) =

q−1∑

i=0

h(xi, xi+1).

W is invariant under integer translations, i.e. W (x) =W (T (x)), where

T (x) = (x̄i)i∈Z with x̄i = xi + 1.

The quotient Xp,q/T is compact (under our hypotheses this is true for a finite
annulus as well as for the infinite cylinder) and W is bounded below, hence it
attains its minimum. If the minimum is in the interior of the domain B, it is a
critical point, that is: ∂W

∂xi
= 0 for i = 0, 1, · · · , q − 1. This implies that

∀i ∈ Z,
∂h

∂x
(xi, xi+1) +

∂h

∂x′
(xi−1, xi) = 0,

and hence that (xi,−∂h
∂x (xi, xi+1)), i ∈ Z is an orbit (see figure 25).

Figure 25.

In fact, an argument due to Aubry and Le Daeron shows that such an orbitt
is necessarily a Birkhoff orbit. All this works nicely in case A is the infinite
cylinder; in case A is a finite annulus, there are some technical problems due to
the existence of a boundary for the domain of definition B of h.

We shall now restrict ourselves to the case of a closed annulus and explain
the proof given by Katok, which solves in a very simple way – indeed without
differential calculus – all these problems. As often in mathematics, it will be
easier to solve a more general problem, namely the case when the preserved
measure is just asked to weight positively each open subset and no regularity
beyond continuity is required.

Definition 50 The interval [ρ0, ρ1] defined by the rotation numbers ρi = ρ(F |R×{i})
of the restriction of F to the boundary of A is called the twist interval.

Theorem 51 Le F be a monotone twist homeomorphism of the annulus which
preserves a measure µ weighting positively open subsets. Then F has a Birkhoff
periodic orbit of type (p, q) for any p/q belonging to the twist interval.
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From Proposition 49 we deduce the

Corollary 52 Let F be a monotone twist homeomorphism of the annulus which
is Lipschitz7 and preserves a measure µ weighting positively open subsets. Then,
for any ρ belonging to the twist interval, F has an Aubry-Mather invariant set
with rotation number ρ.

Proof. Influenced by definition 42, we adapt the labeling of sequences to
the expected behaviour of the orbit we are looking for: let Mp,q be the set of
non decreasing bi-infinite sequences (xn)n∈Z of real numbers such that, noting
fi = F |R×{i} ,

xn+q = xn + 1 and f0(xn) ≤ xn+p ≤ f1(xn).

The topology onMp,q being induced by the embedding (xn)n∈Z → (x0, · · · , xq−1),
its quotient Mp,q/T by the integer translations (xn)n∈Z 7→ (xn + k)n∈Z is com-
pact. That it is non empty can be seen in the following way: either p/q lies in
the interior of the twist interval and ∀x, fq0 (x) < x+ p < fq1 (x), or it lies on the
boundary R×{i} and ∃x̃, x̃+p = fqi (x̃) (see Corollary 16). In the first case, one
takes the sequence xn obtained from the iterates of x under ft for some home-
omorphism ft belonging to a monotone family interpolating between f0 and f1
and x arbitrary, while in the second case one takes the sequence obtained from
the iterates of x̃ under fi.
Guided by the case when the lift µ to A of the invariant measure is the Lebesgue
measure dxdy, we define on Mp,q/T the functional

W ((xn)n∈Z) =

q−1∑

n=0

µ
(
τ(xn, xn+p)

)
,

where the “triangle” τ(x, x′) is defined on figure 26:

Figure 26.

The claim is that any local minimum of W is a Birkhoff orbit of type (p, q). As
such an orbit satisfies F (zn) = zn+p, it suffices to prove, as already explained
(with different notations for the sequences), that at a local minimum of W , one
has

∀n ∈ Z, y(xn, xn+p) = y′(xn−p, xn),

7The remark following Proposition 49 makes the hypothesis that F be Lipschitz unneces-
sary.
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where we recall that, if (x, x′) ∈ B, y(x, x′) and y′(x, x′) are uniquely defined
by the equality F (x, y(x, x′)) = (x′, y′(x, x′)).

The proof of this equality is by showing that if it is not satisfied for some n,
there exists a small perturbation of the sequence, which lowersW . The different
cases are illustrated in figures 27 and 28.

We suppose first that xn−1 < xn < xn+1 and y′(xn−p, xn) > y(xn, xn+p) (left)
or y′(xn−p, xn) < y(xn, xn+p) (right). Moving a little xn to the left or to the
right we see that the preservation of µ leads to a contradiction: indeed, in
both cases, the sum µ

(
τ(xn−p, xn)

)
+µ

(
τ(xn, xn+p)

)
has decreased; in the first

case this is because the increase of µ
(
τ(xn, xn+p)

)
is smaller than the decrease

of µ
(
τ(xn−p, xn)

)
, while in the second one, the decrease of µ

(
τ(xn, xn+p)

)
is

greater than the increase of µ
(
τ(xn−p, xn)

)
.

Figure 27.

Now suppose more generally that xn−1 < xn = xn+1 = · · · = xn+k < xn+k+1.
The twist property implies

1 ≥ y′(xn−p, xn) ≥ · · · ≥ y′(xn−p+k, xn+k) ≥ 0,

1 ≥ y(xn+k, xn+p+k) ≥ · · · ≥ y(xn, xn+p) ≥ 0,

hence either y′(xn−p, xn) ≥ y(xn, xn+p) or y(xn+k, xn+p+k) ≥ y′(xn−p+k, xn+k),
which is similar to the first case, or for all l between 0 and k, y(xn+l, xn+p+l) =
y′(xn−p+l, xn+l).

Figure 28.

Note that, in contrast with the use of differential calculus, the cases when some
y(xi, xi+p) or y

′(xi−p, xi) belongs to the boundary have nothing special.
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3.4.3 Homoclinic orbits

(This is a sketch, see [KH] section 13.2 for details). Now that we have obtained
a Birkhoff periodic orbit of type (p, q) as a minimum of the action W on the
space Mp,q/T , let us come back to the example of the pendulum map (section
3.2 (ii)) and ask to which one of the two orbits represented on figure 19 it
corresponds. For this, let us reverse the process used in the proof of existence
of Aubry-Mather sets with irrational rotation number: to a sequence (ρn)n∈N
of real numbers converging to p/q corresponds a sequence of Aubry-Mather sets
(Mn)nıN; Thanks to exercise 26, after possibly restricting to a subsequence one
can suppose this sequence converges in the Hausdorff topology to an invariant
closed subsetM of the annulus A. If all theMn are invariant circles, the limit is
a circle on which F is conjugate to the rotation Rp/q; if not, it consists in orbits
homoclinic to minimizing Birkhoff periodic orbit (or more generally heteroclinic
to minimizing Birkhoff periodic orbits if there are several of them in the limit).
This implies that the necessarily such limit periodic orbits are of hyperbolic type
in the sense that they admit non periodic orbits of the same rotation number
p/q asymptotic to them. But this does not imply that all minimizing Birkhoff
periodic orbits are of this type (see [He3, L]).

Figure 29. Orbits homoclinic to a Birkhoff orbit.

3.4.4 Remark: an important consequence of the Lipschitz estimates

Coming back to the initial example of twist maps arising from the study of con-
servative elliptic fixed points, a direct application of the above theory seems to
require the existence of invariant closed annuli, that is the existence of invari-
ant closed curves given by Moser’s theorem 1.3.1. But, thanks to the Lipschitz
estimates (lemma 46 and its corollary 47), this is not necessary: blowing up the
fixed point via polar coordinates, one gets a conservative diffeomorphism F of

a closed annulus T1 × [0, 1] onto its image as in figure 30 where only the lower
boundary is preserved. Using generating functions it is possible to construct a
conservative twist diffeomorphism G of A to itself which coincides with F on a
subannulus A′. As the Lipshitz estimates give a good localization of the invari-
ant sets of G that we have constructed, we deduce that if their rotation numbers
are close enough to the the one of F on the lower boundary, these invariant sets
are located in A′ where G = F .

Figure 30.
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In the same way, starting from a twist homeomorphism of the annulus, one
can use the a priori localization of the Birkhoff orbits of type (p, q) to define a
conservative twist homeomorphism of T1×R with twist interval (∞,+∞) which
coincides with F on a subannulus T1 × (ϵ, 1 − ϵ) which contains a priori any
Birkhoff orbit (resp. Aubry-Mather set) of a given rotation number (see [KH]
Proposition 9.3.5) and coincides for example with (x, y) 7→ (x + y, y) outside
T1 × (0, 1). This makes easier the proof in the next section.

3.4.5 The second type of Birkhoff orbit

(Again, this is a sketch, see [KH] section 9.3 for details). Inspired by the simple
situation of the pendulum map (section 3.2 (ii)), we look for a second Birkhoff
periodic orbit of type (p, q) which is entertwined with the one we just found in
the sense that the projection on the circle of the two orbits would be the orbits
of a homeomorphism of the circle with rotation number p/q. Technically we
look for a minimax of the action in a well defined space; Birkhoff was the first
to do that when studying periodic orbits of a billiard. In order to prove that any
critical point of the functional W is a Birkhoff orbit, we shall suppose that F as
well as the density of the invariant measure with respect to Lebesgue measure
are of class C1 and that they have been extended to the cylinder as described
in the former section. Then, the geometrical reasoning used for minima may be
replaced by the fact that the functional W (introduced in the proof of Theorem
51) is differentiable and that any of its critical points corresponds to a Birkhoff
orbit of F .

Let Σ = (xn, yn)n∈N be the lift of a Birkhoff orbit of type (p, q) obtained as a
minimum of W . In order to constrain the orbit we are looking for, we define
the space

MΣ
p,q = {(sn)n∈N, sn+q = sn + 1 and ∀n ∈ Z, xn ≤ sn ≤ xn+1} .

This is a compact convex space on which the function W is defined. One proves
first that the only critical points of W on the boundary are S = (xn)n∈N and its
translate S′ = (x′n)n∈N defined by x′n = xn+1 and that the gradient vector-field
of −W sends MΣ

p,q into itself ([KH] Proposition 9.3.8). Elementary topology
then allows to conclude that W possesses at least another critical point in the
interior of MΣ

p,q. Finally one shows that one of these new critical points must
be a minimax ([KH] Proposition 9.3.9).

3.4.6 Readings

1) In the short paper [Ma], John Mather studies monotone twist mappings of
the open cylinder T1 × R of the form

(x, y) 7→ (x′ = x+ y + h(x), y′ = y + h(x)), with

∫ 1

0

h(x)dx = 0.

The condition on the integral of h is easily seen to be necessary for the existence
of an invariant curve homotopic to the circles T1×a. By a very simple proof rely-
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ing on Birkhoff’s Lipschitz estimates for such an invariant curve, Mather shows
that for Chrikov’s standard map, which is the case when h(x) = k

2π sin 2πx, no
such invariant curve exists for k > 4/3.

Several authors studied criteria for the non existence of invariant curves with a
given rotation number, see for example [Bo2]

2) In [Mo1], Jurgen Moser proves that any C∞ twist map may be considered as
the Poincaré return map of a time periodic Hamiltonian. The converse is not
true, what plays the role of Hamiltonians satisfying the Legendre condition ∂L

∂q̇2

being compositions of monotone twist maps.

4 In between circle and annulus homeomorphisms:
degree one circle endomorphisms

When f̄ (hence any lift f) is no more a homeomorphism, the limit 1
n (f

n(x)−x)
(see theorem 10) does not exist for every point x and only a rotation interval
can be defined:

4.1 The rotation interval

Let f̄ : T1 → T1 be a continuous endomorphism of degree 1 of the circle and let
f : R → R be a lift of f̄ .

Definition 53 The rotation interval I(f) of f is defined as follows:

I(f) =

[
inf
x∈R

ρ̃(x), sup
x∈R

ρ̃(x)

]
, where ∀x ∈ R, ρ̃(x) = lim sup

x→∞

1

n

(
fn(x)− x

)
.

If in the definition of ρ̃(x) the lim sup is in fact a limit, one calls ρ̃(x) the
rotation number of x (or of its orbit) and one notes it ρ(x).

Exercise 27 Show that for a degree one endomorphism f̄ of the circle whose
lifts are non decreasing, the rotation interval I(f) = ρ(f) reduces to a a single
point as in the case of a homeomorphism.

The analogue of Birkhoff orbits (see definition 42), are naturally defined as
follows:

Definition 54 As in the case of homeomorphisms of the annulus, we say that
the orbit of x under f is ω-ordered if for all m,m′ ∈ N, n, n′ ∈ Z, the order
of the points fm(x) + n and fm

′
(x) + n′ on the line is the same as the one of

mω + n and m′ω + n′.

One says also that the orbit under f̄ of x̄ ∈ T1 on which x projects is ω-ordered.
Obviously, this property of x̄ is independent of the choice of the lift x of x̄.

Exercise 28 Show that the orbits (resp. the periodic orbits if ρ(f) is rational)
of a degree one endomorphism f̄ of T1 whose lifts are non decreasing, are ordered
on the circle as the orbits of the corresponding rotation.
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In fact, ω-ordered orbits exist in general:

Theorem 55 Given the lift f of a continuous endomorphism f̄ of degree 1 of
the circle and its rotation interval I = [a, b],, for any ω ∈ I(f), there exists an
orbit of f which is ω-ordered.

The proof will use surgery: knowing the result of Exercise 28, one constructs
the orbit we are looking for as an orbit of a non decreasing endomorphism which
coincides with f along it and has the rotation number ω.

Proposition 56 ([CGT1]) Under the hypotheses of theorem 55, there exists a
continuous family gµ, µ ∈ [0, 1], of non decreasing endomorphisms of the circle
with the following properties:
1) ∀µ ∈ [0, 1], gµ is the lift of an endomorphism ḡµ of the circle, g0 ≤ f ≤ g1
and if gµ is not locally constant at x, one has gµ(x) = f(x);
2) I(g0) = {a}, I(g1) = {b}.

Proof. [of proposition 56 ] We define g0 and g1 by the following formulas (see
figure 31)

g0(x) = inf
y≥x

f(y), g1(x) = sup
y≤x

f(y),

and then choose an interpolating family gµ as in figure 31 (the choice is not
unique; formulas can be found in [CGT1]. This idea seems to have been used
independently by several authors including P. Boyland [Bo1] who mentions R.
Hall and L. Kadanoff).

Figure 31. Defining a family gµ

The gµ being non decreasing, each one has a well defined rotation number ρµ
(see exercise 27); moreover, the family gµ being continuous in the C0 topology,
corollary 11 implies that these rotation numbers fill the interval [ρ0, ρ1] and,
because g0 ≤ f ≤ g1, on has I(f) ⊂ [ρ0, ρ1]. The inclusion in the other direction
will follow from theorem 55.
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Proof. [of theorem 55] For any ω ∈ I(f), there exists µω ∈ [0, 1] such that
ρµω = ω. The orbits (only the periodic orbits if ω ∈ Q) of ḡµ being ρµ-ordered
(exercise 28), it is sufficient to show that, for each µ ∈ [0, 1], there exists ȳ ∈ T1

whose orbit is contained in the subset of T1 where ḡµ coincides with f̄ (and is
periodic if ρ(µ) ∈ Q). Fixing x̄ ∈ T1, we call {Jα}α∈A the set of open intervals
in T1 such that ḡµω

is locally constant (and hence differs from f̄) which are
visited by the orbit of x̄. We distinguish three cases:

1) ω is irrational, and the set A is finite ;
2) ω is irrational, and the set A is infinite ;
3) ω = p/q is rational.

In the first case, there must exist n ∈ N such that the orbit of ȳ = ḡnµω
(x̄)

does not meet any Jα: if not, then for any n there must exist m ∈ N such
that ḡmnµω

(x) belongs to some Jα, α ∈ A. But this implies that there exists an
infinite sequence p1, p2, · · · , pk, · · · of integers such that ḡpkµω

(x̄) belongs to some

Jα. Hence, for at least two elements pi, pj of the sequence, ḡpiµω
(x̄) and ḡ

pj
µω (x̄)

belong to the same Jα, which implies that their image under ḡµω
is the same.

Hence, ḡpi+1
µω

(x̄) = ḡ
pj+1
µω (x̄) which, if pj > pi, can be written ḡ

pj−pi
µω (ḡpi+1

µω
(x̄)) =

ḡpi+1
µω

(x̄), that is ḡpi+1
µω

(x̄) would be a periodic point, which contradicts the
irrationality of ω.

In the second case, let Jα =]āα, b̄α[ and let ȳ be an accumulation point of the
set {b̄α}α∈A. The orbit of ȳ cannot enter into some open interval J where ḡµω

is constant: indeed, if ḡnµω
(ȳ) ∈ J , the orbits of points belonging to some Jα

sufficiently close to ȳ, in particular points of the form ḡpµω
(x) would also visit

J which hence coincides with some Jα0
, α0 ∈ A. Hence the orbits of ḡnµω

(ȳ)
and ḡpµω

(x̄) coincide. But this would imply that eventually the orbit of ȳ should
come back to some Jα1 close enough to ȳ so that ḡnµω

(Jα1) ⊂ J = Jα0 and as
in the first case, one concludes because there would exist an integer k such that
ḡµω

(ȳ) = ḡµω
(ḡkµω

(ȳ)) = ḡkµω
(ḡµω

(ȳ)).

In the third case, if a p/q-ordered (that is periodic) orbit x̄0, x1, · · · , x̄q−1 of
ḡµω

visits some open interval J where ḡµω
is constant, say x0 ∈ J , it consists

in q fixed points of ḡqµω
each of which belongs to some open interval where

ḡqµω
is constant. Indeed, if z̄ is close enough to x̄i, ḡ

q
µω

(z̄) = ḡiµω
(ḡq−iµω

(z̄)) and

ḡq−iµω
(z̄) ∈ J has the same image as x̄0 under ḡµω , hence ḡ

q
µω

(z̄) = ḡqµω
(x̄i) = x̄i.

One concludes by looking at figure 32: any intersection of the graph of ḡqµω
with

the diagonal outside of the intervals of constancy corresponds to a well orderd
orbit of f̄ .
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Figure 32. The rational case : graph of ḡqµω
.

4.2 Ordered orbits in families

Let fµ, µ ∈ [0, 1], be a continuous family of lifts of continuous endomorphisms
f̄µ of degree 1 of T1 and let I(fµ) = [aµ, bµ] be the rotation interval of fµ.

Theorem 57 ([CGT2]) If b0 < ω < a1, for any x̄0 ∈ T1, there exists µ0 ∈
]0, 1[ such that the orbit of x̄0 under f̄µ0

be ω-ordered.

Exercise 29 Show that in order to prove theorem 4.2, it is enough to consider
the case when ω = p

q is rational.

Proof. The case q = 1 being trivial (just look how the graphs of the fonctions
fµ behave with respect to the graph of x 7→ x+ p) we shall suppose that q ̸= 1.
We adopt the same ordering of candidate orbits as in the proof of corollary 52:
suppposing the fraction p

q irreducible (and diffrent from an integer), let Mp,q be

the set of non decreasing bi-infinite sequences (xi)i∈Z of real numbers such that
xi+q = xi + 1. With the topology induced by the embedding

(xi)i∈Z → (x0, x1 − x0, x2 − x1 · · · , xq − xq−1 = 1 + x0 − xq−1),

Mp,q is homeomorphic to R×∆q−1, where

∆q−1 =

{
y = (y1, y2, . . . , yq, ∀i, yi ≥ 0,

q∑

i=1

yi = 1

}

is the standard (q− 1)-dimensional simplex. Let Mx0
p,q be the subspace of Mp,q,

homeomorphic to the simplex ∆q−1, made of the elements with x0 given and
let D : [0, 1]×Mx0

p,q → Rq be defined by

D (µ, (xi)i∈Z) = (d1, d2, . . . , dq), di = xi+p − fµ(xi).

Exercise 30 If q ̸= 1, the image under D of the boundary ∂
(
[0, 1]×Mx0

p,q

)
=

{0, 1} ×Mx0
p,q ∪ [0, 1]× ∂Mx0

p,q of [0, 1]×Mx0
p,q does not contain 0 ∈ Rq.

Indication. p
q being irreducible, there exists i0, j0 ∈ Z such that i0p + j0q = 1.

Hence D ((xi)i∈Z) = 0 implies that, for all i ∈ Z, xi+1 = f i0(xi) + j0. Conclude
that, if xi = xi+1, the point x̄i ∈ T1 is fixed by f̄ and get a contradiction.
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Exercise 31 Show that one can choose a fonction ρ : [0, 1]2 → R such that the
2-parameter family fµ,t of lifts of continuous endomorphisms of degree 1 of T1

defined by fµ,t = Id+
[
sup(0, 1− 2t)× (−Id+ fµ)

]
+ ρµ,t be such that

1) fµ,0 = fµ,
2) For each t ∈ [0, 1], fµ,t satisfies the hypotheses of theorem 4.2,
3) fµ,1 is a monotonous family of rotations.

End of the proof of theorem 4.2: Exercise 31 suggests that we first study the case
of a monotonous family of rotations fµ(x) = x+µ where µ belongs to an interval
[µ0, µ1] containing

p
q . Notice that in this case, D is the affine diffeomorphism

D
(
µ, (xi)i∈Z

)
= (x1+p − x1 − µ, x2+p − x2 − µ, . . . , xq+p − xq − µ) and that

D
(
p
q , (x0 +

i
q )i∈Z

)
= (0, 0, . . . , 0).

Exercise 32 Conclude the proof of theorem 4.2 in the case q ̸= 1 by using the
homotopy t 7→ fµ,t to show that, for the original family fµ, the degree of the
map D from the boundary of [0, 1]×Mx0

p,q to Rq \ 0 (exercise 30) is ±1.

Reading: the Arnold family beyond the domain of homeomorphisms.
The continuation of Arnold’s tongues in the part of Arnold’s family (section
2.8) consisting of non injective endomorphisms is thoroughly studied in [Bo1].
It is proved there that the diagram on figure 15 extends nicely above the line
a = 1

2π : the tongues overlap in a uniform, monotonic manner and, for irrational
values of ρa, they open into a tongue whose tip lies on the line a = 1

2π (figure
33).

Figure 33. Tongues overlap in the Arnold family.

4.3 Rotation interval and the rotation sets of individual
orbits

Given a continuous degree one endomorphism f̄ of the circle, and a lift f of f̄ ,
one can define the rotation set ρ(f, x) of an individual point x̄ ∈ T1 as the set
of limit points of 1

n (f
n(x)− x) where x is any lift to R of x̄.

Theorem 58 ([BMPT]) 1) For any x̄ ∈ T1, ρ(f, x̄) is a closed subinterval of
ρ(f).
2) Given [α, β] ⊂ ρ(f), there exists x̄ ∈ T1 such that ρ(f, z̄) = [α, β].
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A simple example is given by f(x) = x+sin 2πx, which belongs to the Arnold’s
family (see section 2.8):
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[He2] M.R. Herman, Mesure de Lebesgue et nombre de rotation, in Geometry
and Topology, Lecture Notes in Mathematics 597, 271-293, Springer 1977

[He3] M.R. Herman, Sur les courbes invariantes par les difféomorphismes de
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